Snow Water Equivalent Retrieval Using Active and Passive Microwave Observations

This paper implements a newly developed combined active and passive algorithm for the retrieval of snow water equivalent (SWE) by using three‐channel active and two‐channel passive observations. First, passive microwave observations at 19 and 37 GHz are used to determine the scattering albedo of sno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2021-07, Vol.57 (7), p.n/a
Hauptverfasser: Zhu, Jiyue, Tan, Shurun, Tsang, Leung, Kang, Do‐Hyuk, Kim, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Water resources research
container_volume 57
creator Zhu, Jiyue
Tan, Shurun
Tsang, Leung
Kang, Do‐Hyuk
Kim, Edward
description This paper implements a newly developed combined active and passive algorithm for the retrieval of snow water equivalent (SWE) by using three‐channel active and two‐channel passive observations. First, passive microwave observations at 19 and 37 GHz are used to determine the scattering albedo of snow. An a priori scattering albedo is obtained by averaging over time series observations. Second, 13.3 GHz is introduced to formulate a three‐channel (9.6, 13.3, and 17.2 GHz) radar algorithm which reduces effects of background scattering from the snow‐soil interface, and improves SWE retrieval. In the algorithm, the bicontinuous dense media radiative transfer (DMRT‐Bic) is used to compute look‐up tables (LUTs) of both radar backscatter and radiometer brightness temperatures (TBs) of the snowpack. To accelerate the retrieval, a parameterized model is derived from LUT by regression training, which links backscatter to the scattering albedo at 9.6 GHz or 13.3 GHz and to SWE. The volume scattering of snow is obtained by subtracting the background scattering from radar observations. SWE is then retrieved through a cost function that is guided by the a priori scattering albedo obtained from the passive microwave observations. The proposed algorithm, along with the active‐only version, is evaluated against the Finnish Nordic Snow Radar Experiment (NoSREx) data set measured in 2009–2013. The combined active‐passive algorithm achieves root mean square errors (RSME) less than 27 mm and correlation coefficients above 0.68 for 2009–2010, RMSE less than 21 mm and correlation above 0.85 for 2010–2011, and RMSE less than 40 mm and correlation above 0.38 for 2012–2013. Key Points Snow water equivalent retrieval using X (9.6 GHz) and upper Ku band (17.2 GHz) radar observations is improved by adding lower Ku‐band (13.3 GHz) data Passive observations are used to obtain scattering albedos, which improves the radar retrieval algorithm performance The resulting combined active and passive algorithm is validated against the Finnish NoSREx dataset
doi_str_mv 10.1029/2020WR027563
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555394194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555394194</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3682-9e88a70ed79c5234bd2f0fd94fc246c4fa84ac2db905c595981f2d5f9c2b5c7e3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKs3P0DAq6vJJNlsjqXUP1CprJYeQzabSErdbZNtS7-9W-rBk6d5Az_mvXkI3VLyQAmoRyBAFiUBKXJ2hgZUcZ5JJdk5GhDCWUaZkpfoKqUlIZSLXA7Q7KNp93hhOhfxZLMNO7NyTYdL18Xg-gXPU2i-8Mh2YeewaWr8blI66rdgY7s3vZpVycWd6ULbpGt04c0quZvfOUTzp8nn-CWbzp5fx6NpZlheQKZcURhJXC2VFcB4VYMnvlbcW-C55d4U3FioK0WEFUqognqohVcWKmGlY0N0d7q7ju1m61Knl-02Nr2lBiEEU7z_vqfuT1QfNaXovF7H8G3iQVOij5Xpv5X1ODvh-7Byh39ZvSjHJQhWAPsBaoRtfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555394194</pqid></control><display><type>article</type><title>Snow Water Equivalent Retrieval Using Active and Passive Microwave Observations</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Jiyue ; Tan, Shurun ; Tsang, Leung ; Kang, Do‐Hyuk ; Kim, Edward</creator><creatorcontrib>Zhu, Jiyue ; Tan, Shurun ; Tsang, Leung ; Kang, Do‐Hyuk ; Kim, Edward</creatorcontrib><description>This paper implements a newly developed combined active and passive algorithm for the retrieval of snow water equivalent (SWE) by using three‐channel active and two‐channel passive observations. First, passive microwave observations at 19 and 37 GHz are used to determine the scattering albedo of snow. An a priori scattering albedo is obtained by averaging over time series observations. Second, 13.3 GHz is introduced to formulate a three‐channel (9.6, 13.3, and 17.2 GHz) radar algorithm which reduces effects of background scattering from the snow‐soil interface, and improves SWE retrieval. In the algorithm, the bicontinuous dense media radiative transfer (DMRT‐Bic) is used to compute look‐up tables (LUTs) of both radar backscatter and radiometer brightness temperatures (TBs) of the snowpack. To accelerate the retrieval, a parameterized model is derived from LUT by regression training, which links backscatter to the scattering albedo at 9.6 GHz or 13.3 GHz and to SWE. The volume scattering of snow is obtained by subtracting the background scattering from radar observations. SWE is then retrieved through a cost function that is guided by the a priori scattering albedo obtained from the passive microwave observations. The proposed algorithm, along with the active‐only version, is evaluated against the Finnish Nordic Snow Radar Experiment (NoSREx) data set measured in 2009–2013. The combined active‐passive algorithm achieves root mean square errors (RSME) less than 27 mm and correlation coefficients above 0.68 for 2009–2010, RMSE less than 21 mm and correlation above 0.85 for 2010–2011, and RMSE less than 40 mm and correlation above 0.38 for 2012–2013. Key Points Snow water equivalent retrieval using X (9.6 GHz) and upper Ku band (17.2 GHz) radar observations is improved by adding lower Ku‐band (13.3 GHz) data Passive observations are used to obtain scattering albedos, which improves the radar retrieval algorithm performance The resulting combined active and passive algorithm is validated against the Finnish NoSREx dataset</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2020WR027563</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Albedo ; Albedo of snow ; Algorithms ; Backscatter ; Backscattering ; Brightness temperature ; Coefficients ; combine active and passive ; Correlation coefficient ; Correlation coefficients ; Cost function ; Equivalence ; Meteorological satellites ; Radar ; Radar backscatter ; Radar data ; Radiative transfer ; Radiometers ; Retrieval ; Scattering ; scattering albedo ; Snow ; snow water equivalent (SWE) ; Snow-water equivalent ; Snowpack ; Soil improvement ; Training</subject><ispartof>Water resources research, 2021-07, Vol.57 (7), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3682-9e88a70ed79c5234bd2f0fd94fc246c4fa84ac2db905c595981f2d5f9c2b5c7e3</citedby><cites>FETCH-LOGICAL-a3682-9e88a70ed79c5234bd2f0fd94fc246c4fa84ac2db905c595981f2d5f9c2b5c7e3</cites><orcidid>0000-0003-0638-8790 ; 0000-0002-8764-8883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020WR027563$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020WR027563$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11494,27903,27904,45553,45554,46446,46870</link.rule.ids></links><search><creatorcontrib>Zhu, Jiyue</creatorcontrib><creatorcontrib>Tan, Shurun</creatorcontrib><creatorcontrib>Tsang, Leung</creatorcontrib><creatorcontrib>Kang, Do‐Hyuk</creatorcontrib><creatorcontrib>Kim, Edward</creatorcontrib><title>Snow Water Equivalent Retrieval Using Active and Passive Microwave Observations</title><title>Water resources research</title><description>This paper implements a newly developed combined active and passive algorithm for the retrieval of snow water equivalent (SWE) by using three‐channel active and two‐channel passive observations. First, passive microwave observations at 19 and 37 GHz are used to determine the scattering albedo of snow. An a priori scattering albedo is obtained by averaging over time series observations. Second, 13.3 GHz is introduced to formulate a three‐channel (9.6, 13.3, and 17.2 GHz) radar algorithm which reduces effects of background scattering from the snow‐soil interface, and improves SWE retrieval. In the algorithm, the bicontinuous dense media radiative transfer (DMRT‐Bic) is used to compute look‐up tables (LUTs) of both radar backscatter and radiometer brightness temperatures (TBs) of the snowpack. To accelerate the retrieval, a parameterized model is derived from LUT by regression training, which links backscatter to the scattering albedo at 9.6 GHz or 13.3 GHz and to SWE. The volume scattering of snow is obtained by subtracting the background scattering from radar observations. SWE is then retrieved through a cost function that is guided by the a priori scattering albedo obtained from the passive microwave observations. The proposed algorithm, along with the active‐only version, is evaluated against the Finnish Nordic Snow Radar Experiment (NoSREx) data set measured in 2009–2013. The combined active‐passive algorithm achieves root mean square errors (RSME) less than 27 mm and correlation coefficients above 0.68 for 2009–2010, RMSE less than 21 mm and correlation above 0.85 for 2010–2011, and RMSE less than 40 mm and correlation above 0.38 for 2012–2013. Key Points Snow water equivalent retrieval using X (9.6 GHz) and upper Ku band (17.2 GHz) radar observations is improved by adding lower Ku‐band (13.3 GHz) data Passive observations are used to obtain scattering albedos, which improves the radar retrieval algorithm performance The resulting combined active and passive algorithm is validated against the Finnish NoSREx dataset</description><subject>Albedo</subject><subject>Albedo of snow</subject><subject>Algorithms</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Brightness temperature</subject><subject>Coefficients</subject><subject>combine active and passive</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Cost function</subject><subject>Equivalence</subject><subject>Meteorological satellites</subject><subject>Radar</subject><subject>Radar backscatter</subject><subject>Radar data</subject><subject>Radiative transfer</subject><subject>Radiometers</subject><subject>Retrieval</subject><subject>Scattering</subject><subject>scattering albedo</subject><subject>Snow</subject><subject>snow water equivalent (SWE)</subject><subject>Snow-water equivalent</subject><subject>Snowpack</subject><subject>Soil improvement</subject><subject>Training</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKs3P0DAq6vJJNlsjqXUP1CprJYeQzabSErdbZNtS7-9W-rBk6d5Az_mvXkI3VLyQAmoRyBAFiUBKXJ2hgZUcZ5JJdk5GhDCWUaZkpfoKqUlIZSLXA7Q7KNp93hhOhfxZLMNO7NyTYdL18Xg-gXPU2i-8Mh2YeewaWr8blI66rdgY7s3vZpVycWd6ULbpGt04c0quZvfOUTzp8nn-CWbzp5fx6NpZlheQKZcURhJXC2VFcB4VYMnvlbcW-C55d4U3FioK0WEFUqognqohVcWKmGlY0N0d7q7ju1m61Knl-02Nr2lBiEEU7z_vqfuT1QfNaXovF7H8G3iQVOij5Xpv5X1ODvh-7Byh39ZvSjHJQhWAPsBaoRtfw</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Zhu, Jiyue</creator><creator>Tan, Shurun</creator><creator>Tsang, Leung</creator><creator>Kang, Do‐Hyuk</creator><creator>Kim, Edward</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0638-8790</orcidid><orcidid>https://orcid.org/0000-0002-8764-8883</orcidid></search><sort><creationdate>202107</creationdate><title>Snow Water Equivalent Retrieval Using Active and Passive Microwave Observations</title><author>Zhu, Jiyue ; Tan, Shurun ; Tsang, Leung ; Kang, Do‐Hyuk ; Kim, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3682-9e88a70ed79c5234bd2f0fd94fc246c4fa84ac2db905c595981f2d5f9c2b5c7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Albedo</topic><topic>Albedo of snow</topic><topic>Algorithms</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Brightness temperature</topic><topic>Coefficients</topic><topic>combine active and passive</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Cost function</topic><topic>Equivalence</topic><topic>Meteorological satellites</topic><topic>Radar</topic><topic>Radar backscatter</topic><topic>Radar data</topic><topic>Radiative transfer</topic><topic>Radiometers</topic><topic>Retrieval</topic><topic>Scattering</topic><topic>scattering albedo</topic><topic>Snow</topic><topic>snow water equivalent (SWE)</topic><topic>Snow-water equivalent</topic><topic>Snowpack</topic><topic>Soil improvement</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jiyue</creatorcontrib><creatorcontrib>Tan, Shurun</creatorcontrib><creatorcontrib>Tsang, Leung</creatorcontrib><creatorcontrib>Kang, Do‐Hyuk</creatorcontrib><creatorcontrib>Kim, Edward</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jiyue</au><au>Tan, Shurun</au><au>Tsang, Leung</au><au>Kang, Do‐Hyuk</au><au>Kim, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Snow Water Equivalent Retrieval Using Active and Passive Microwave Observations</atitle><jtitle>Water resources research</jtitle><date>2021-07</date><risdate>2021</risdate><volume>57</volume><issue>7</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>This paper implements a newly developed combined active and passive algorithm for the retrieval of snow water equivalent (SWE) by using three‐channel active and two‐channel passive observations. First, passive microwave observations at 19 and 37 GHz are used to determine the scattering albedo of snow. An a priori scattering albedo is obtained by averaging over time series observations. Second, 13.3 GHz is introduced to formulate a three‐channel (9.6, 13.3, and 17.2 GHz) radar algorithm which reduces effects of background scattering from the snow‐soil interface, and improves SWE retrieval. In the algorithm, the bicontinuous dense media radiative transfer (DMRT‐Bic) is used to compute look‐up tables (LUTs) of both radar backscatter and radiometer brightness temperatures (TBs) of the snowpack. To accelerate the retrieval, a parameterized model is derived from LUT by regression training, which links backscatter to the scattering albedo at 9.6 GHz or 13.3 GHz and to SWE. The volume scattering of snow is obtained by subtracting the background scattering from radar observations. SWE is then retrieved through a cost function that is guided by the a priori scattering albedo obtained from the passive microwave observations. The proposed algorithm, along with the active‐only version, is evaluated against the Finnish Nordic Snow Radar Experiment (NoSREx) data set measured in 2009–2013. The combined active‐passive algorithm achieves root mean square errors (RSME) less than 27 mm and correlation coefficients above 0.68 for 2009–2010, RMSE less than 21 mm and correlation above 0.85 for 2010–2011, and RMSE less than 40 mm and correlation above 0.38 for 2012–2013. Key Points Snow water equivalent retrieval using X (9.6 GHz) and upper Ku band (17.2 GHz) radar observations is improved by adding lower Ku‐band (13.3 GHz) data Passive observations are used to obtain scattering albedos, which improves the radar retrieval algorithm performance The resulting combined active and passive algorithm is validated against the Finnish NoSREx dataset</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020WR027563</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0638-8790</orcidid><orcidid>https://orcid.org/0000-0002-8764-8883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2021-07, Vol.57 (7), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2555394194
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Albedo
Albedo of snow
Algorithms
Backscatter
Backscattering
Brightness temperature
Coefficients
combine active and passive
Correlation coefficient
Correlation coefficients
Cost function
Equivalence
Meteorological satellites
Radar
Radar backscatter
Radar data
Radiative transfer
Radiometers
Retrieval
Scattering
scattering albedo
Snow
snow water equivalent (SWE)
Snow-water equivalent
Snowpack
Soil improvement
Training
title Snow Water Equivalent Retrieval Using Active and Passive Microwave Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Snow%20Water%20Equivalent%20Retrieval%20Using%20Active%20and%20Passive%20Microwave%20Observations&rft.jtitle=Water%20resources%20research&rft.au=Zhu,%20Jiyue&rft.date=2021-07&rft.volume=57&rft.issue=7&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2020WR027563&rft_dat=%3Cproquest_cross%3E2555394194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555394194&rft_id=info:pmid/&rfr_iscdi=true