Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers
Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely opt...
Gespeichert in:
Veröffentlicht in: | International journal of dynamics and control 2021-09, Vol.9 (3), p.1107-1116 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1116 |
---|---|
container_issue | 3 |
container_start_page | 1107 |
container_title | International journal of dynamics and control |
container_volume | 9 |
creator | Amiri, Niloufar Fakhari, Vahid Sepahvand, Shayan |
description | Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely optimized feedback linearization controller and optimized sliding mode controller are designed and compared for forward-motion control of a bio-inspired caterpillar robot, which contains five bars connected via torque joints. At first, the governing nonlinear dynamic equations of motion are presented. Then, feedback linearization controller and sliding mode controller are designed to deliver angular positions of the robot to desired set points. To compare the performance of the mentioned controllers, the related parameters are optimized. In this regard, an appropriate objective function is defined to minimize the stabilization errors and control inputs, simultaneously. It is noted that the optimization process is performed using a genetic algorithm. Finally, the performance of the optimized controllers in the presence of parameter uncertainties, sensor noise, and actuator disturbances is compared quantitatively in the viewpoints of the stabilization error and control effort. |
doi_str_mv | 10.1007/s40435-020-00736-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555359468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555359468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d87f0c93c0262ab5fe34423cbf947c409d708e707298dabfb506715001d2e3b33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxDowfiXxElW8pCI2ILGzHD8qlzQOdrqgX09oeOxYzYx07h3pIHRO4JIAVFeZA2eiAArFeLKyKI_QjBIpClrK-vh3r19P0SLnDQBQwoFyOUPhMQ4hdtjEbkixxdFjjY0eXOpD2-qEU2zigHc5dGsc-yFsw95Z7J2zjTZvuA2d0yns9aFFdxbnNtgveBut-6ltXcpn6MTrNrvF95yjl9ub5-V9sXq6e1herwrDiBwKW1cejGQGaEl1I7xjnFNmGi95ZThIW0HtKqiorK1ufCOgrIgAIJY61jA2RxdTb5_i-87lQW3iLnXjS0WFEExIXtYjRSfKpJhzcl71KWx1-lAE1JdVNVlVo1V1sKrKMcSmUB7hbu3SX_U_qU-yo3t7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555359468</pqid></control><display><type>article</type><title>Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Amiri, Niloufar ; Fakhari, Vahid ; Sepahvand, Shayan</creator><creatorcontrib>Amiri, Niloufar ; Fakhari, Vahid ; Sepahvand, Shayan</creatorcontrib><description>Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely optimized feedback linearization controller and optimized sliding mode controller are designed and compared for forward-motion control of a bio-inspired caterpillar robot, which contains five bars connected via torque joints. At first, the governing nonlinear dynamic equations of motion are presented. Then, feedback linearization controller and sliding mode controller are designed to deliver angular positions of the robot to desired set points. To compare the performance of the mentioned controllers, the related parameters are optimized. In this regard, an appropriate objective function is defined to minimize the stabilization errors and control inputs, simultaneously. It is noted that the optimization process is performed using a genetic algorithm. Finally, the performance of the optimized controllers in the presence of parameter uncertainties, sensor noise, and actuator disturbances is compared quantitatively in the viewpoints of the stabilization error and control effort.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-020-00736-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actuators ; Angular position ; Biomimetics ; Caterpillars ; Complexity ; Control ; Control and Systems Theory ; Control systems design ; Controllers ; Dynamical Systems ; Engineering ; Equations of motion ; Feedback linearization ; Genetic algorithms ; Industrial applications ; Inspection ; Motion control ; Natural disasters ; Nonlinear dynamics ; Optimization ; Parameter uncertainty ; Robot control ; Robot dynamics ; Robots ; Sliding mode control ; Stabilization ; Vibration</subject><ispartof>International journal of dynamics and control, 2021-09, Vol.9 (3), p.1107-1116</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d87f0c93c0262ab5fe34423cbf947c409d708e707298dabfb506715001d2e3b33</citedby><cites>FETCH-LOGICAL-c319t-d87f0c93c0262ab5fe34423cbf947c409d708e707298dabfb506715001d2e3b33</cites><orcidid>0000-0001-8370-0501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-020-00736-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-020-00736-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Amiri, Niloufar</creatorcontrib><creatorcontrib>Fakhari, Vahid</creatorcontrib><creatorcontrib>Sepahvand, Shayan</creatorcontrib><title>Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely optimized feedback linearization controller and optimized sliding mode controller are designed and compared for forward-motion control of a bio-inspired caterpillar robot, which contains five bars connected via torque joints. At first, the governing nonlinear dynamic equations of motion are presented. Then, feedback linearization controller and sliding mode controller are designed to deliver angular positions of the robot to desired set points. To compare the performance of the mentioned controllers, the related parameters are optimized. In this regard, an appropriate objective function is defined to minimize the stabilization errors and control inputs, simultaneously. It is noted that the optimization process is performed using a genetic algorithm. Finally, the performance of the optimized controllers in the presence of parameter uncertainties, sensor noise, and actuator disturbances is compared quantitatively in the viewpoints of the stabilization error and control effort.</description><subject>Actuators</subject><subject>Angular position</subject><subject>Biomimetics</subject><subject>Caterpillars</subject><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Feedback linearization</subject><subject>Genetic algorithms</subject><subject>Industrial applications</subject><subject>Inspection</subject><subject>Motion control</subject><subject>Natural disasters</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Sliding mode control</subject><subject>Stabilization</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CyxDowfiXxElW8pCI2ILGzHD8qlzQOdrqgX09oeOxYzYx07h3pIHRO4JIAVFeZA2eiAArFeLKyKI_QjBIpClrK-vh3r19P0SLnDQBQwoFyOUPhMQ4hdtjEbkixxdFjjY0eXOpD2-qEU2zigHc5dGsc-yFsw95Z7J2zjTZvuA2d0yns9aFFdxbnNtgveBut-6ltXcpn6MTrNrvF95yjl9ub5-V9sXq6e1herwrDiBwKW1cejGQGaEl1I7xjnFNmGi95ZThIW0HtKqiorK1ufCOgrIgAIJY61jA2RxdTb5_i-87lQW3iLnXjS0WFEExIXtYjRSfKpJhzcl71KWx1-lAE1JdVNVlVo1V1sKrKMcSmUB7hbu3SX_U_qU-yo3t7</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Amiri, Niloufar</creator><creator>Fakhari, Vahid</creator><creator>Sepahvand, Shayan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8370-0501</orcidid></search><sort><creationdate>20210901</creationdate><title>Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers</title><author>Amiri, Niloufar ; Fakhari, Vahid ; Sepahvand, Shayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d87f0c93c0262ab5fe34423cbf947c409d708e707298dabfb506715001d2e3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Angular position</topic><topic>Biomimetics</topic><topic>Caterpillars</topic><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Feedback linearization</topic><topic>Genetic algorithms</topic><topic>Industrial applications</topic><topic>Inspection</topic><topic>Motion control</topic><topic>Natural disasters</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Sliding mode control</topic><topic>Stabilization</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Amiri, Niloufar</creatorcontrib><creatorcontrib>Fakhari, Vahid</creatorcontrib><creatorcontrib>Sepahvand, Shayan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri, Niloufar</au><au>Fakhari, Vahid</au><au>Sepahvand, Shayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>9</volume><issue>3</issue><spage>1107</spage><epage>1116</epage><pages>1107-1116</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely optimized feedback linearization controller and optimized sliding mode controller are designed and compared for forward-motion control of a bio-inspired caterpillar robot, which contains five bars connected via torque joints. At first, the governing nonlinear dynamic equations of motion are presented. Then, feedback linearization controller and sliding mode controller are designed to deliver angular positions of the robot to desired set points. To compare the performance of the mentioned controllers, the related parameters are optimized. In this regard, an appropriate objective function is defined to minimize the stabilization errors and control inputs, simultaneously. It is noted that the optimization process is performed using a genetic algorithm. Finally, the performance of the optimized controllers in the presence of parameter uncertainties, sensor noise, and actuator disturbances is compared quantitatively in the viewpoints of the stabilization error and control effort.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-020-00736-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8370-0501</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-268X |
ispartof | International journal of dynamics and control, 2021-09, Vol.9 (3), p.1107-1116 |
issn | 2195-268X 2195-2698 |
language | eng |
recordid | cdi_proquest_journals_2555359468 |
source | SpringerLink Journals - AutoHoldings |
subjects | Actuators Angular position Biomimetics Caterpillars Complexity Control Control and Systems Theory Control systems design Controllers Dynamical Systems Engineering Equations of motion Feedback linearization Genetic algorithms Industrial applications Inspection Motion control Natural disasters Nonlinear dynamics Optimization Parameter uncertainty Robot control Robot dynamics Robots Sliding mode control Stabilization Vibration |
title | Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20control%20of%20a%20caterpillar%20robot%20using%20optimized%20feedback%20linearization%20and%20sliding%20mode%20controllers&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Amiri,%20Niloufar&rft.date=2021-09-01&rft.volume=9&rft.issue=3&rft.spage=1107&rft.epage=1116&rft.pages=1107-1116&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-020-00736-6&rft_dat=%3Cproquest_cross%3E2555359468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555359468&rft_id=info:pmid/&rfr_iscdi=true |