Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers

Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2021-09, Vol.9 (3), p.1107-1116
Hauptverfasser: Amiri, Niloufar, Fakhari, Vahid, Sepahvand, Shayan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1116
container_issue 3
container_start_page 1107
container_title International journal of dynamics and control
container_volume 9
creator Amiri, Niloufar
Fakhari, Vahid
Sepahvand, Shayan
description Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely optimized feedback linearization controller and optimized sliding mode controller are designed and compared for forward-motion control of a bio-inspired caterpillar robot, which contains five bars connected via torque joints. At first, the governing nonlinear dynamic equations of motion are presented. Then, feedback linearization controller and sliding mode controller are designed to deliver angular positions of the robot to desired set points. To compare the performance of the mentioned controllers, the related parameters are optimized. In this regard, an appropriate objective function is defined to minimize the stabilization errors and control inputs, simultaneously. It is noted that the optimization process is performed using a genetic algorithm. Finally, the performance of the optimized controllers in the presence of parameter uncertainties, sensor noise, and actuator disturbances is compared quantitatively in the viewpoints of the stabilization error and control effort.
doi_str_mv 10.1007/s40435-020-00736-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555359468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555359468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d87f0c93c0262ab5fe34423cbf947c409d708e707298dabfb506715001d2e3b33</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxDowfiXxElW8pCI2ILGzHD8qlzQOdrqgX09oeOxYzYx07h3pIHRO4JIAVFeZA2eiAArFeLKyKI_QjBIpClrK-vh3r19P0SLnDQBQwoFyOUPhMQ4hdtjEbkixxdFjjY0eXOpD2-qEU2zigHc5dGsc-yFsw95Z7J2zjTZvuA2d0yns9aFFdxbnNtgveBut-6ltXcpn6MTrNrvF95yjl9ub5-V9sXq6e1herwrDiBwKW1cejGQGaEl1I7xjnFNmGi95ZThIW0HtKqiorK1ufCOgrIgAIJY61jA2RxdTb5_i-87lQW3iLnXjS0WFEExIXtYjRSfKpJhzcl71KWx1-lAE1JdVNVlVo1V1sKrKMcSmUB7hbu3SX_U_qU-yo3t7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555359468</pqid></control><display><type>article</type><title>Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Amiri, Niloufar ; Fakhari, Vahid ; Sepahvand, Shayan</creator><creatorcontrib>Amiri, Niloufar ; Fakhari, Vahid ; Sepahvand, Shayan</creatorcontrib><description>Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely optimized feedback linearization controller and optimized sliding mode controller are designed and compared for forward-motion control of a bio-inspired caterpillar robot, which contains five bars connected via torque joints. At first, the governing nonlinear dynamic equations of motion are presented. Then, feedback linearization controller and sliding mode controller are designed to deliver angular positions of the robot to desired set points. To compare the performance of the mentioned controllers, the related parameters are optimized. In this regard, an appropriate objective function is defined to minimize the stabilization errors and control inputs, simultaneously. It is noted that the optimization process is performed using a genetic algorithm. Finally, the performance of the optimized controllers in the presence of parameter uncertainties, sensor noise, and actuator disturbances is compared quantitatively in the viewpoints of the stabilization error and control effort.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-020-00736-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actuators ; Angular position ; Biomimetics ; Caterpillars ; Complexity ; Control ; Control and Systems Theory ; Control systems design ; Controllers ; Dynamical Systems ; Engineering ; Equations of motion ; Feedback linearization ; Genetic algorithms ; Industrial applications ; Inspection ; Motion control ; Natural disasters ; Nonlinear dynamics ; Optimization ; Parameter uncertainty ; Robot control ; Robot dynamics ; Robots ; Sliding mode control ; Stabilization ; Vibration</subject><ispartof>International journal of dynamics and control, 2021-09, Vol.9 (3), p.1107-1116</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d87f0c93c0262ab5fe34423cbf947c409d708e707298dabfb506715001d2e3b33</citedby><cites>FETCH-LOGICAL-c319t-d87f0c93c0262ab5fe34423cbf947c409d708e707298dabfb506715001d2e3b33</cites><orcidid>0000-0001-8370-0501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-020-00736-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-020-00736-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Amiri, Niloufar</creatorcontrib><creatorcontrib>Fakhari, Vahid</creatorcontrib><creatorcontrib>Sepahvand, Shayan</creatorcontrib><title>Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely optimized feedback linearization controller and optimized sliding mode controller are designed and compared for forward-motion control of a bio-inspired caterpillar robot, which contains five bars connected via torque joints. At first, the governing nonlinear dynamic equations of motion are presented. Then, feedback linearization controller and sliding mode controller are designed to deliver angular positions of the robot to desired set points. To compare the performance of the mentioned controllers, the related parameters are optimized. In this regard, an appropriate objective function is defined to minimize the stabilization errors and control inputs, simultaneously. It is noted that the optimization process is performed using a genetic algorithm. Finally, the performance of the optimized controllers in the presence of parameter uncertainties, sensor noise, and actuator disturbances is compared quantitatively in the viewpoints of the stabilization error and control effort.</description><subject>Actuators</subject><subject>Angular position</subject><subject>Biomimetics</subject><subject>Caterpillars</subject><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Feedback linearization</subject><subject>Genetic algorithms</subject><subject>Industrial applications</subject><subject>Inspection</subject><subject>Motion control</subject><subject>Natural disasters</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Sliding mode control</subject><subject>Stabilization</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CyxDowfiXxElW8pCI2ILGzHD8qlzQOdrqgX09oeOxYzYx07h3pIHRO4JIAVFeZA2eiAArFeLKyKI_QjBIpClrK-vh3r19P0SLnDQBQwoFyOUPhMQ4hdtjEbkixxdFjjY0eXOpD2-qEU2zigHc5dGsc-yFsw95Z7J2zjTZvuA2d0yns9aFFdxbnNtgveBut-6ltXcpn6MTrNrvF95yjl9ub5-V9sXq6e1herwrDiBwKW1cejGQGaEl1I7xjnFNmGi95ZThIW0HtKqiorK1ufCOgrIgAIJY61jA2RxdTb5_i-87lQW3iLnXjS0WFEExIXtYjRSfKpJhzcl71KWx1-lAE1JdVNVlVo1V1sKrKMcSmUB7hbu3SX_U_qU-yo3t7</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Amiri, Niloufar</creator><creator>Fakhari, Vahid</creator><creator>Sepahvand, Shayan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8370-0501</orcidid></search><sort><creationdate>20210901</creationdate><title>Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers</title><author>Amiri, Niloufar ; Fakhari, Vahid ; Sepahvand, Shayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d87f0c93c0262ab5fe34423cbf947c409d708e707298dabfb506715001d2e3b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Angular position</topic><topic>Biomimetics</topic><topic>Caterpillars</topic><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Feedback linearization</topic><topic>Genetic algorithms</topic><topic>Industrial applications</topic><topic>Inspection</topic><topic>Motion control</topic><topic>Natural disasters</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Sliding mode control</topic><topic>Stabilization</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Amiri, Niloufar</creatorcontrib><creatorcontrib>Fakhari, Vahid</creatorcontrib><creatorcontrib>Sepahvand, Shayan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri, Niloufar</au><au>Fakhari, Vahid</au><au>Sepahvand, Shayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>9</volume><issue>3</issue><spage>1107</spage><epage>1116</epage><pages>1107-1116</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>Caterpillar robots are widely used in various industrial applications, including pipe inspection, access to dangerous locations in factories, passing through narrow holes during natural disasters, and even in processes such as endoscopy and colonoscopy. In this paper, two control schemes, namely optimized feedback linearization controller and optimized sliding mode controller are designed and compared for forward-motion control of a bio-inspired caterpillar robot, which contains five bars connected via torque joints. At first, the governing nonlinear dynamic equations of motion are presented. Then, feedback linearization controller and sliding mode controller are designed to deliver angular positions of the robot to desired set points. To compare the performance of the mentioned controllers, the related parameters are optimized. In this regard, an appropriate objective function is defined to minimize the stabilization errors and control inputs, simultaneously. It is noted that the optimization process is performed using a genetic algorithm. Finally, the performance of the optimized controllers in the presence of parameter uncertainties, sensor noise, and actuator disturbances is compared quantitatively in the viewpoints of the stabilization error and control effort.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-020-00736-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8370-0501</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2021-09, Vol.9 (3), p.1107-1116
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2555359468
source SpringerLink Journals - AutoHoldings
subjects Actuators
Angular position
Biomimetics
Caterpillars
Complexity
Control
Control and Systems Theory
Control systems design
Controllers
Dynamical Systems
Engineering
Equations of motion
Feedback linearization
Genetic algorithms
Industrial applications
Inspection
Motion control
Natural disasters
Nonlinear dynamics
Optimization
Parameter uncertainty
Robot control
Robot dynamics
Robots
Sliding mode control
Stabilization
Vibration
title Motion control of a caterpillar robot using optimized feedback linearization and sliding mode controllers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20control%20of%20a%20caterpillar%20robot%20using%20optimized%20feedback%20linearization%20and%20sliding%20mode%20controllers&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Amiri,%20Niloufar&rft.date=2021-09-01&rft.volume=9&rft.issue=3&rft.spage=1107&rft.epage=1116&rft.pages=1107-1116&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-020-00736-6&rft_dat=%3Cproquest_cross%3E2555359468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555359468&rft_id=info:pmid/&rfr_iscdi=true