NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design

Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-07, Vol.11 (28), p.n/a
Hauptverfasser: Xie, Aiwen, Zuo, Ruzhong, Qiao, Zhenliang, Fu, Zhengqian, Hu, Tengfei, Fei, Linfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Advanced energy materials
container_volume 11
creator Xie, Aiwen
Zuo, Ruzhong
Qiao, Zhenliang
Fu, Zhengqian
Hu, Tengfei
Fei, Linfeng
description Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable energy density Wrec ≈ 8.73 J cm–3, high efficiency η ≈ 80.1%, ultrafast discharge rate of
doi_str_mv 10.1002/aenm.202101378
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2555309259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555309259</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-b4794de3e54321046eea0a7400c8769f87e3e441eb741bd1545d4a7517bba8be3</originalsourceid><addsrcrecordid>eNo9UD1PwzAQjRBIVKUrsyUWGFLs2I6TsZQWkNIW0TJbTnItrtIkOAklGz8B8RP5JTgq6g33-e6d7jnOJcFDgrF3qyDfDT3sEUyoCE6cHvEJc_2A4dNjTr1zZ1BVW2yNhQRT2nN-5moeL-jv1_f1ncZDHnXuZqUXFEWgUtufGgD0Apn6LAyagjEFZJDURidorEqV6LowFdrr-g0tmxKMtrBJDmbT2uWlHaoNoGcw68LsVJ5AhT60QrMmq3WZAVq2HVZXteW7h0pv8gvnbK2yCgb_se-8Tier8aMbLR6exqPILT1KAzdmImQpUOCM2reZD6CwEgzjJBB-uA6EnTFGIBaMxCnhjKdMCU5EHKsgBtp3rg68pSneG6hquS0ak9uT0uOcUxx6PLSo8IDa6wxaWRq9U6aVBMtOd9npLo-6y9FkPjtW9A_KNHvh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555309259</pqid></control><display><type>article</type><title>NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xie, Aiwen ; Zuo, Ruzhong ; Qiao, Zhenliang ; Fu, Zhengqian ; Hu, Tengfei ; Fei, Linfeng</creator><creatorcontrib>Xie, Aiwen ; Zuo, Ruzhong ; Qiao, Zhenliang ; Fu, Zhengqian ; Hu, Tengfei ; Fei, Linfeng</creatorcontrib><description>Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable energy density Wrec ≈ 8.73 J cm–3, high efficiency η ≈ 80.1%, ultrafast discharge rate of &lt;85 ns, and temperature‐insensitive high Wrec and η (Wrec ≈ 5.73 ± 4% J cm–3, η ≈ 75 ± 6%, 25–200 °C) are simultaneously obtained in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 relaxor FE ceramics by introducing various polarization configurations in combination with microstructure modification. The structure mechanism for the excellent energy‐storage performance is disclosed by analyzing in situ structure evolution on multiple scales during loading/unloading by means of transmission electron microscopy and Raman spectroscopy. Both local regions consisting of different‐scale polar nanodomains and a nonpolar matrix, and local orthorhombic symmetry remaining with electric fields ensure a linear‐like polarization response within a wide field and temperature range owing to significantly delayed polarization saturation. The stabilization of orthorhombic FE phases rather than antiferroelectric orthorhombic phases in NaNbO3 after adding (Bi0.5Li0.5)TiO3 is also explored by means of X‐ray diffraction, dielectric properties, and selected area electron diffraction. In comparison with antiferroelectric ceramics, NaNbO3‐based relaxor FE ceramics provide a new solution to successfully design next‐generation pulsed power capacitors. Very high energy density, Wrec ≈ 8.73 J cm–3, high efficiency, η ≈ 80.1%, excellent thermal stability (±6%, 25–200 °C), and ultrafast discharge rate (t0.9 &lt; 85 ns) are achieved in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 bulk relaxor ferroelectrics. In situ local structure evolution coupled with the energy‐storage process is investigated by means of in situ transmission electron microscopy and Raman spectroscopy under electric fields.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202101378</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antiferroelectricity ; Capacitors ; Ceramics ; Dielectric properties ; Electric fields ; Electron diffraction ; Energy storage ; energy‐storage capacitors ; Ferroelectric materials ; Flux density ; Industrial applications ; lead‐free relaxor ferroelectrics ; Mathematical analysis ; Matrices (mathematics) ; multiscale structure evolution ; nanodomains ; Orthorhombic phase ; Polarization ; Raman spectroscopy ; Relaxors ; Sodium compounds</subject><ispartof>Advanced energy materials, 2021-07, Vol.11 (28), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8295-4323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202101378$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202101378$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xie, Aiwen</creatorcontrib><creatorcontrib>Zuo, Ruzhong</creatorcontrib><creatorcontrib>Qiao, Zhenliang</creatorcontrib><creatorcontrib>Fu, Zhengqian</creatorcontrib><creatorcontrib>Hu, Tengfei</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><title>NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design</title><title>Advanced energy materials</title><description>Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable energy density Wrec ≈ 8.73 J cm–3, high efficiency η ≈ 80.1%, ultrafast discharge rate of &lt;85 ns, and temperature‐insensitive high Wrec and η (Wrec ≈ 5.73 ± 4% J cm–3, η ≈ 75 ± 6%, 25–200 °C) are simultaneously obtained in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 relaxor FE ceramics by introducing various polarization configurations in combination with microstructure modification. The structure mechanism for the excellent energy‐storage performance is disclosed by analyzing in situ structure evolution on multiple scales during loading/unloading by means of transmission electron microscopy and Raman spectroscopy. Both local regions consisting of different‐scale polar nanodomains and a nonpolar matrix, and local orthorhombic symmetry remaining with electric fields ensure a linear‐like polarization response within a wide field and temperature range owing to significantly delayed polarization saturation. The stabilization of orthorhombic FE phases rather than antiferroelectric orthorhombic phases in NaNbO3 after adding (Bi0.5Li0.5)TiO3 is also explored by means of X‐ray diffraction, dielectric properties, and selected area electron diffraction. In comparison with antiferroelectric ceramics, NaNbO3‐based relaxor FE ceramics provide a new solution to successfully design next‐generation pulsed power capacitors. Very high energy density, Wrec ≈ 8.73 J cm–3, high efficiency, η ≈ 80.1%, excellent thermal stability (±6%, 25–200 °C), and ultrafast discharge rate (t0.9 &lt; 85 ns) are achieved in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 bulk relaxor ferroelectrics. In situ local structure evolution coupled with the energy‐storage process is investigated by means of in situ transmission electron microscopy and Raman spectroscopy under electric fields.</description><subject>Antiferroelectricity</subject><subject>Capacitors</subject><subject>Ceramics</subject><subject>Dielectric properties</subject><subject>Electric fields</subject><subject>Electron diffraction</subject><subject>Energy storage</subject><subject>energy‐storage capacitors</subject><subject>Ferroelectric materials</subject><subject>Flux density</subject><subject>Industrial applications</subject><subject>lead‐free relaxor ferroelectrics</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>multiscale structure evolution</subject><subject>nanodomains</subject><subject>Orthorhombic phase</subject><subject>Polarization</subject><subject>Raman spectroscopy</subject><subject>Relaxors</subject><subject>Sodium compounds</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UD1PwzAQjRBIVKUrsyUWGFLs2I6TsZQWkNIW0TJbTnItrtIkOAklGz8B8RP5JTgq6g33-e6d7jnOJcFDgrF3qyDfDT3sEUyoCE6cHvEJc_2A4dNjTr1zZ1BVW2yNhQRT2nN-5moeL-jv1_f1ncZDHnXuZqUXFEWgUtufGgD0Apn6LAyagjEFZJDURidorEqV6LowFdrr-g0tmxKMtrBJDmbT2uWlHaoNoGcw68LsVJ5AhT60QrMmq3WZAVq2HVZXteW7h0pv8gvnbK2yCgb_se-8Tier8aMbLR6exqPILT1KAzdmImQpUOCM2reZD6CwEgzjJBB-uA6EnTFGIBaMxCnhjKdMCU5EHKsgBtp3rg68pSneG6hquS0ak9uT0uOcUxx6PLSo8IDa6wxaWRq9U6aVBMtOd9npLo-6y9FkPjtW9A_KNHvh</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Xie, Aiwen</creator><creator>Zuo, Ruzhong</creator><creator>Qiao, Zhenliang</creator><creator>Fu, Zhengqian</creator><creator>Hu, Tengfei</creator><creator>Fei, Linfeng</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8295-4323</orcidid></search><sort><creationdate>20210701</creationdate><title>NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design</title><author>Xie, Aiwen ; Zuo, Ruzhong ; Qiao, Zhenliang ; Fu, Zhengqian ; Hu, Tengfei ; Fei, Linfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-b4794de3e54321046eea0a7400c8769f87e3e441eb741bd1545d4a7517bba8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiferroelectricity</topic><topic>Capacitors</topic><topic>Ceramics</topic><topic>Dielectric properties</topic><topic>Electric fields</topic><topic>Electron diffraction</topic><topic>Energy storage</topic><topic>energy‐storage capacitors</topic><topic>Ferroelectric materials</topic><topic>Flux density</topic><topic>Industrial applications</topic><topic>lead‐free relaxor ferroelectrics</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>multiscale structure evolution</topic><topic>nanodomains</topic><topic>Orthorhombic phase</topic><topic>Polarization</topic><topic>Raman spectroscopy</topic><topic>Relaxors</topic><topic>Sodium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Aiwen</creatorcontrib><creatorcontrib>Zuo, Ruzhong</creatorcontrib><creatorcontrib>Qiao, Zhenliang</creatorcontrib><creatorcontrib>Fu, Zhengqian</creatorcontrib><creatorcontrib>Hu, Tengfei</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Aiwen</au><au>Zuo, Ruzhong</au><au>Qiao, Zhenliang</au><au>Fu, Zhengqian</au><au>Hu, Tengfei</au><au>Fei, Linfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design</atitle><jtitle>Advanced energy materials</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>28</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable energy density Wrec ≈ 8.73 J cm–3, high efficiency η ≈ 80.1%, ultrafast discharge rate of &lt;85 ns, and temperature‐insensitive high Wrec and η (Wrec ≈ 5.73 ± 4% J cm–3, η ≈ 75 ± 6%, 25–200 °C) are simultaneously obtained in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 relaxor FE ceramics by introducing various polarization configurations in combination with microstructure modification. The structure mechanism for the excellent energy‐storage performance is disclosed by analyzing in situ structure evolution on multiple scales during loading/unloading by means of transmission electron microscopy and Raman spectroscopy. Both local regions consisting of different‐scale polar nanodomains and a nonpolar matrix, and local orthorhombic symmetry remaining with electric fields ensure a linear‐like polarization response within a wide field and temperature range owing to significantly delayed polarization saturation. The stabilization of orthorhombic FE phases rather than antiferroelectric orthorhombic phases in NaNbO3 after adding (Bi0.5Li0.5)TiO3 is also explored by means of X‐ray diffraction, dielectric properties, and selected area electron diffraction. In comparison with antiferroelectric ceramics, NaNbO3‐based relaxor FE ceramics provide a new solution to successfully design next‐generation pulsed power capacitors. Very high energy density, Wrec ≈ 8.73 J cm–3, high efficiency, η ≈ 80.1%, excellent thermal stability (±6%, 25–200 °C), and ultrafast discharge rate (t0.9 &lt; 85 ns) are achieved in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 bulk relaxor ferroelectrics. In situ local structure evolution coupled with the energy‐storage process is investigated by means of in situ transmission electron microscopy and Raman spectroscopy under electric fields.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202101378</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8295-4323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-07, Vol.11 (28), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2555309259
source Wiley Online Library Journals Frontfile Complete
subjects Antiferroelectricity
Capacitors
Ceramics
Dielectric properties
Electric fields
Electron diffraction
Energy storage
energy‐storage capacitors
Ferroelectric materials
Flux density
Industrial applications
lead‐free relaxor ferroelectrics
Mathematical analysis
Matrices (mathematics)
multiscale structure evolution
nanodomains
Orthorhombic phase
Polarization
Raman spectroscopy
Relaxors
Sodium compounds
title NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NaNbO3%E2%80%90(Bi0.5Li0.5)TiO3%20Lead%E2%80%90Free%20Relaxor%20Ferroelectric%20Capacitors%20with%20Superior%20Energy%E2%80%90Storage%20Performances%20via%20Multiple%20Synergistic%20Design&rft.jtitle=Advanced%20energy%20materials&rft.au=Xie,%20Aiwen&rft.date=2021-07-01&rft.volume=11&rft.issue=28&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202101378&rft_dat=%3Cproquest_wiley%3E2555309259%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555309259&rft_id=info:pmid/&rfr_iscdi=true