NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design
Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable en...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-07, Vol.11 (28), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Xie, Aiwen Zuo, Ruzhong Qiao, Zhenliang Fu, Zhengqian Hu, Tengfei Fei, Linfeng |
description | Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable energy density Wrec ≈ 8.73 J cm–3, high efficiency η ≈ 80.1%, ultrafast discharge rate of |
doi_str_mv | 10.1002/aenm.202101378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2555309259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555309259</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-b4794de3e54321046eea0a7400c8769f87e3e441eb741bd1545d4a7517bba8be3</originalsourceid><addsrcrecordid>eNo9UD1PwzAQjRBIVKUrsyUWGFLs2I6TsZQWkNIW0TJbTnItrtIkOAklGz8B8RP5JTgq6g33-e6d7jnOJcFDgrF3qyDfDT3sEUyoCE6cHvEJc_2A4dNjTr1zZ1BVW2yNhQRT2nN-5moeL-jv1_f1ncZDHnXuZqUXFEWgUtufGgD0Apn6LAyagjEFZJDURidorEqV6LowFdrr-g0tmxKMtrBJDmbT2uWlHaoNoGcw68LsVJ5AhT60QrMmq3WZAVq2HVZXteW7h0pv8gvnbK2yCgb_se-8Tier8aMbLR6exqPILT1KAzdmImQpUOCM2reZD6CwEgzjJBB-uA6EnTFGIBaMxCnhjKdMCU5EHKsgBtp3rg68pSneG6hquS0ak9uT0uOcUxx6PLSo8IDa6wxaWRq9U6aVBMtOd9npLo-6y9FkPjtW9A_KNHvh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555309259</pqid></control><display><type>article</type><title>NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xie, Aiwen ; Zuo, Ruzhong ; Qiao, Zhenliang ; Fu, Zhengqian ; Hu, Tengfei ; Fei, Linfeng</creator><creatorcontrib>Xie, Aiwen ; Zuo, Ruzhong ; Qiao, Zhenliang ; Fu, Zhengqian ; Hu, Tengfei ; Fei, Linfeng</creatorcontrib><description>Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable energy density Wrec ≈ 8.73 J cm–3, high efficiency η ≈ 80.1%, ultrafast discharge rate of <85 ns, and temperature‐insensitive high Wrec and η (Wrec ≈ 5.73 ± 4% J cm–3, η ≈ 75 ± 6%, 25–200 °C) are simultaneously obtained in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 relaxor FE ceramics by introducing various polarization configurations in combination with microstructure modification. The structure mechanism for the excellent energy‐storage performance is disclosed by analyzing in situ structure evolution on multiple scales during loading/unloading by means of transmission electron microscopy and Raman spectroscopy. Both local regions consisting of different‐scale polar nanodomains and a nonpolar matrix, and local orthorhombic symmetry remaining with electric fields ensure a linear‐like polarization response within a wide field and temperature range owing to significantly delayed polarization saturation. The stabilization of orthorhombic FE phases rather than antiferroelectric orthorhombic phases in NaNbO3 after adding (Bi0.5Li0.5)TiO3 is also explored by means of X‐ray diffraction, dielectric properties, and selected area electron diffraction. In comparison with antiferroelectric ceramics, NaNbO3‐based relaxor FE ceramics provide a new solution to successfully design next‐generation pulsed power capacitors.
Very high energy density, Wrec ≈ 8.73 J cm–3, high efficiency, η ≈ 80.1%, excellent thermal stability (±6%, 25–200 °C), and ultrafast discharge rate (t0.9 < 85 ns) are achieved in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 bulk relaxor ferroelectrics. In situ local structure evolution coupled with the energy‐storage process is investigated by means of in situ transmission electron microscopy and Raman spectroscopy under electric fields.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202101378</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antiferroelectricity ; Capacitors ; Ceramics ; Dielectric properties ; Electric fields ; Electron diffraction ; Energy storage ; energy‐storage capacitors ; Ferroelectric materials ; Flux density ; Industrial applications ; lead‐free relaxor ferroelectrics ; Mathematical analysis ; Matrices (mathematics) ; multiscale structure evolution ; nanodomains ; Orthorhombic phase ; Polarization ; Raman spectroscopy ; Relaxors ; Sodium compounds</subject><ispartof>Advanced energy materials, 2021-07, Vol.11 (28), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8295-4323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202101378$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202101378$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xie, Aiwen</creatorcontrib><creatorcontrib>Zuo, Ruzhong</creatorcontrib><creatorcontrib>Qiao, Zhenliang</creatorcontrib><creatorcontrib>Fu, Zhengqian</creatorcontrib><creatorcontrib>Hu, Tengfei</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><title>NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design</title><title>Advanced energy materials</title><description>Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable energy density Wrec ≈ 8.73 J cm–3, high efficiency η ≈ 80.1%, ultrafast discharge rate of <85 ns, and temperature‐insensitive high Wrec and η (Wrec ≈ 5.73 ± 4% J cm–3, η ≈ 75 ± 6%, 25–200 °C) are simultaneously obtained in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 relaxor FE ceramics by introducing various polarization configurations in combination with microstructure modification. The structure mechanism for the excellent energy‐storage performance is disclosed by analyzing in situ structure evolution on multiple scales during loading/unloading by means of transmission electron microscopy and Raman spectroscopy. Both local regions consisting of different‐scale polar nanodomains and a nonpolar matrix, and local orthorhombic symmetry remaining with electric fields ensure a linear‐like polarization response within a wide field and temperature range owing to significantly delayed polarization saturation. The stabilization of orthorhombic FE phases rather than antiferroelectric orthorhombic phases in NaNbO3 after adding (Bi0.5Li0.5)TiO3 is also explored by means of X‐ray diffraction, dielectric properties, and selected area electron diffraction. In comparison with antiferroelectric ceramics, NaNbO3‐based relaxor FE ceramics provide a new solution to successfully design next‐generation pulsed power capacitors.
Very high energy density, Wrec ≈ 8.73 J cm–3, high efficiency, η ≈ 80.1%, excellent thermal stability (±6%, 25–200 °C), and ultrafast discharge rate (t0.9 < 85 ns) are achieved in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 bulk relaxor ferroelectrics. In situ local structure evolution coupled with the energy‐storage process is investigated by means of in situ transmission electron microscopy and Raman spectroscopy under electric fields.</description><subject>Antiferroelectricity</subject><subject>Capacitors</subject><subject>Ceramics</subject><subject>Dielectric properties</subject><subject>Electric fields</subject><subject>Electron diffraction</subject><subject>Energy storage</subject><subject>energy‐storage capacitors</subject><subject>Ferroelectric materials</subject><subject>Flux density</subject><subject>Industrial applications</subject><subject>lead‐free relaxor ferroelectrics</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>multiscale structure evolution</subject><subject>nanodomains</subject><subject>Orthorhombic phase</subject><subject>Polarization</subject><subject>Raman spectroscopy</subject><subject>Relaxors</subject><subject>Sodium compounds</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UD1PwzAQjRBIVKUrsyUWGFLs2I6TsZQWkNIW0TJbTnItrtIkOAklGz8B8RP5JTgq6g33-e6d7jnOJcFDgrF3qyDfDT3sEUyoCE6cHvEJc_2A4dNjTr1zZ1BVW2yNhQRT2nN-5moeL-jv1_f1ncZDHnXuZqUXFEWgUtufGgD0Apn6LAyagjEFZJDURidorEqV6LowFdrr-g0tmxKMtrBJDmbT2uWlHaoNoGcw68LsVJ5AhT60QrMmq3WZAVq2HVZXteW7h0pv8gvnbK2yCgb_se-8Tier8aMbLR6exqPILT1KAzdmImQpUOCM2reZD6CwEgzjJBB-uA6EnTFGIBaMxCnhjKdMCU5EHKsgBtp3rg68pSneG6hquS0ak9uT0uOcUxx6PLSo8IDa6wxaWRq9U6aVBMtOd9npLo-6y9FkPjtW9A_KNHvh</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Xie, Aiwen</creator><creator>Zuo, Ruzhong</creator><creator>Qiao, Zhenliang</creator><creator>Fu, Zhengqian</creator><creator>Hu, Tengfei</creator><creator>Fei, Linfeng</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8295-4323</orcidid></search><sort><creationdate>20210701</creationdate><title>NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design</title><author>Xie, Aiwen ; Zuo, Ruzhong ; Qiao, Zhenliang ; Fu, Zhengqian ; Hu, Tengfei ; Fei, Linfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-b4794de3e54321046eea0a7400c8769f87e3e441eb741bd1545d4a7517bba8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiferroelectricity</topic><topic>Capacitors</topic><topic>Ceramics</topic><topic>Dielectric properties</topic><topic>Electric fields</topic><topic>Electron diffraction</topic><topic>Energy storage</topic><topic>energy‐storage capacitors</topic><topic>Ferroelectric materials</topic><topic>Flux density</topic><topic>Industrial applications</topic><topic>lead‐free relaxor ferroelectrics</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>multiscale structure evolution</topic><topic>nanodomains</topic><topic>Orthorhombic phase</topic><topic>Polarization</topic><topic>Raman spectroscopy</topic><topic>Relaxors</topic><topic>Sodium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Aiwen</creatorcontrib><creatorcontrib>Zuo, Ruzhong</creatorcontrib><creatorcontrib>Qiao, Zhenliang</creatorcontrib><creatorcontrib>Fu, Zhengqian</creatorcontrib><creatorcontrib>Hu, Tengfei</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Aiwen</au><au>Zuo, Ruzhong</au><au>Qiao, Zhenliang</au><au>Fu, Zhengqian</au><au>Hu, Tengfei</au><au>Fei, Linfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design</atitle><jtitle>Advanced energy materials</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>28</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable energy density Wrec ≈ 8.73 J cm–3, high efficiency η ≈ 80.1%, ultrafast discharge rate of <85 ns, and temperature‐insensitive high Wrec and η (Wrec ≈ 5.73 ± 4% J cm–3, η ≈ 75 ± 6%, 25–200 °C) are simultaneously obtained in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 relaxor FE ceramics by introducing various polarization configurations in combination with microstructure modification. The structure mechanism for the excellent energy‐storage performance is disclosed by analyzing in situ structure evolution on multiple scales during loading/unloading by means of transmission electron microscopy and Raman spectroscopy. Both local regions consisting of different‐scale polar nanodomains and a nonpolar matrix, and local orthorhombic symmetry remaining with electric fields ensure a linear‐like polarization response within a wide field and temperature range owing to significantly delayed polarization saturation. The stabilization of orthorhombic FE phases rather than antiferroelectric orthorhombic phases in NaNbO3 after adding (Bi0.5Li0.5)TiO3 is also explored by means of X‐ray diffraction, dielectric properties, and selected area electron diffraction. In comparison with antiferroelectric ceramics, NaNbO3‐based relaxor FE ceramics provide a new solution to successfully design next‐generation pulsed power capacitors.
Very high energy density, Wrec ≈ 8.73 J cm–3, high efficiency, η ≈ 80.1%, excellent thermal stability (±6%, 25–200 °C), and ultrafast discharge rate (t0.9 < 85 ns) are achieved in 0.68NaNbO3‐0.32(Bi0.5Li0.5)TiO3 bulk relaxor ferroelectrics. In situ local structure evolution coupled with the energy‐storage process is investigated by means of in situ transmission electron microscopy and Raman spectroscopy under electric fields.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202101378</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8295-4323</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-07, Vol.11 (28), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2555309259 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antiferroelectricity Capacitors Ceramics Dielectric properties Electric fields Electron diffraction Energy storage energy‐storage capacitors Ferroelectric materials Flux density Industrial applications lead‐free relaxor ferroelectrics Mathematical analysis Matrices (mathematics) multiscale structure evolution nanodomains Orthorhombic phase Polarization Raman spectroscopy Relaxors Sodium compounds |
title | NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NaNbO3%E2%80%90(Bi0.5Li0.5)TiO3%20Lead%E2%80%90Free%20Relaxor%20Ferroelectric%20Capacitors%20with%20Superior%20Energy%E2%80%90Storage%20Performances%20via%20Multiple%20Synergistic%20Design&rft.jtitle=Advanced%20energy%20materials&rft.au=Xie,%20Aiwen&rft.date=2021-07-01&rft.volume=11&rft.issue=28&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202101378&rft_dat=%3Cproquest_wiley%3E2555309259%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555309259&rft_id=info:pmid/&rfr_iscdi=true |