Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules

Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-07, Vol.11 (28), p.n/a
Hauptverfasser: Yang, Fu, Dong, Lirong, Jang, Dongju, Saparov, Begench, Tam, Kai Cheong, Zhang, Kaicheng, Li, Ning, Brabec, Christoph J., Egelhaaf, Hans‐Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Advanced energy materials
container_volume 11
creator Yang, Fu
Dong, Lirong
Jang, Dongju
Saparov, Begench
Tam, Kai Cheong
Zhang, Kaicheng
Li, Ning
Brabec, Christoph J.
Egelhaaf, Hans‐Joachim
description Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSCs with carbon as the top electrode (carbon‐PSCs) fully printed at fairly low temperature by using cheap materials under ambient conditions, thus meeting the requirements for scalable production on an industrial level. High‐quality perovskite layers are achieved by using a combinatorial engineering concept, including solvent engineering, additive engineering, and processing engineering. The optimized carbon‐PSCs with all layers including electron transport layer, perovskite, hole transport layer, and carbon electrode which are printed under ambient conditions show efficiencies exceeding 18% with enhanced stability, retaining 100% of their initial efficiency after 5000 h in a humid atmosphere. Finally, large‐area perovskite modules are successfully obtained and outstanding performance is shown with an efficiency of 15.3% by optimizing the femtosecond laser parameters for the P2 line patterning. These results represent important progress toward fully printed planar carbon electrode perovskite devices as a promising approach for the scaling up and worldwide application of PSCs. The fabrication of fully printed and cost‐efficient perovskite solar cells in ambient air–as required for an industrial scalable process is reported. Through multi‐objective optimization, fully printed carbon electrode perovskite solar cells and modules are obtained, providing a stable power conversion efficiency of 18.1% and 15.3%, respectively, which is the highest performance of fully printed perovskite devices reported so far.
doi_str_mv 10.1002/aenm.202101219
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555309227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555309227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-7b5eba9dffcb210487c8eccdd6a49c7534cb55f85c772777394a571be998abce3</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxTdGE4ly9dzE82I_tnR7JBtQE1AS8Nx0u7PJYtliuwvhv7eIwaNzmXnJ-81kXpI8EDwiGNMnDe12RDElmFAir5IBGZMsHecZvr7MjN4mwxA2OFYmCWZskOzn7oDWsN2B113vAS29MxACVGjWW3uMumm7qKZ13ZgG2g4trW61R6vO9-YHKbQvXYumFkznXRV3gHf78Nl0gFbORm8B1gak2wotXNVbCPfJTa1tgOFvv0s-ZtN18ZLO359fi8k8NYwImYqSQ6llVdemjK9luTA5GFNVY51JIzjLTMl5nXMjBBVCMJlpLkgJUua6NMDuksfz3p13Xz2ETm1c79t4UlHOOcOSUhFdo7PLeBeCh1rtfLPV_qgIVqd41SledYk3AvIMHBoLx3_cajJ9W_yx3yx1gEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555309227</pqid></control><display><type>article</type><title>Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Fu ; Dong, Lirong ; Jang, Dongju ; Saparov, Begench ; Tam, Kai Cheong ; Zhang, Kaicheng ; Li, Ning ; Brabec, Christoph J. ; Egelhaaf, Hans‐Joachim</creator><creatorcontrib>Yang, Fu ; Dong, Lirong ; Jang, Dongju ; Saparov, Begench ; Tam, Kai Cheong ; Zhang, Kaicheng ; Li, Ning ; Brabec, Christoph J. ; Egelhaaf, Hans‐Joachim</creatorcontrib><description>Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSCs with carbon as the top electrode (carbon‐PSCs) fully printed at fairly low temperature by using cheap materials under ambient conditions, thus meeting the requirements for scalable production on an industrial level. High‐quality perovskite layers are achieved by using a combinatorial engineering concept, including solvent engineering, additive engineering, and processing engineering. The optimized carbon‐PSCs with all layers including electron transport layer, perovskite, hole transport layer, and carbon electrode which are printed under ambient conditions show efficiencies exceeding 18% with enhanced stability, retaining 100% of their initial efficiency after 5000 h in a humid atmosphere. Finally, large‐area perovskite modules are successfully obtained and outstanding performance is shown with an efficiency of 15.3% by optimizing the femtosecond laser parameters for the P2 line patterning. These results represent important progress toward fully printed planar carbon electrode perovskite devices as a promising approach for the scaling up and worldwide application of PSCs. The fabrication of fully printed and cost‐efficient perovskite solar cells in ambient air–as required for an industrial scalable process is reported. Through multi‐objective optimization, fully printed carbon electrode perovskite solar cells and modules are obtained, providing a stable power conversion efficiency of 18.1% and 15.3%, respectively, which is the highest performance of fully printed perovskite devices reported so far.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202101219</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; carbon electrodes ; Combinatorial analysis ; Commercialization ; doctor blades ; Electrodes ; Electron transport ; Engineering ; fully printed devices ; long‐term stability ; Low temperature ; Modules ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Planar structures ; Solar cells</subject><ispartof>Advanced energy materials, 2021-07, Vol.11 (28), p.n/a</ispartof><rights>2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-7b5eba9dffcb210487c8eccdd6a49c7534cb55f85c772777394a571be998abce3</citedby><cites>FETCH-LOGICAL-c3179-7b5eba9dffcb210487c8eccdd6a49c7534cb55f85c772777394a571be998abce3</cites><orcidid>0000-0001-7673-8026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202101219$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202101219$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Yang, Fu</creatorcontrib><creatorcontrib>Dong, Lirong</creatorcontrib><creatorcontrib>Jang, Dongju</creatorcontrib><creatorcontrib>Saparov, Begench</creatorcontrib><creatorcontrib>Tam, Kai Cheong</creatorcontrib><creatorcontrib>Zhang, Kaicheng</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><creatorcontrib>Egelhaaf, Hans‐Joachim</creatorcontrib><title>Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules</title><title>Advanced energy materials</title><description>Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSCs with carbon as the top electrode (carbon‐PSCs) fully printed at fairly low temperature by using cheap materials under ambient conditions, thus meeting the requirements for scalable production on an industrial level. High‐quality perovskite layers are achieved by using a combinatorial engineering concept, including solvent engineering, additive engineering, and processing engineering. The optimized carbon‐PSCs with all layers including electron transport layer, perovskite, hole transport layer, and carbon electrode which are printed under ambient conditions show efficiencies exceeding 18% with enhanced stability, retaining 100% of their initial efficiency after 5000 h in a humid atmosphere. Finally, large‐area perovskite modules are successfully obtained and outstanding performance is shown with an efficiency of 15.3% by optimizing the femtosecond laser parameters for the P2 line patterning. These results represent important progress toward fully printed planar carbon electrode perovskite devices as a promising approach for the scaling up and worldwide application of PSCs. The fabrication of fully printed and cost‐efficient perovskite solar cells in ambient air–as required for an industrial scalable process is reported. Through multi‐objective optimization, fully printed carbon electrode perovskite solar cells and modules are obtained, providing a stable power conversion efficiency of 18.1% and 15.3%, respectively, which is the highest performance of fully printed perovskite devices reported so far.</description><subject>Carbon</subject><subject>carbon electrodes</subject><subject>Combinatorial analysis</subject><subject>Commercialization</subject><subject>doctor blades</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Engineering</subject><subject>fully printed devices</subject><subject>long‐term stability</subject><subject>Low temperature</subject><subject>Modules</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Planar structures</subject><subject>Solar cells</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1PAjEQxTdGE4ly9dzE82I_tnR7JBtQE1AS8Nx0u7PJYtliuwvhv7eIwaNzmXnJ-81kXpI8EDwiGNMnDe12RDElmFAir5IBGZMsHecZvr7MjN4mwxA2OFYmCWZskOzn7oDWsN2B113vAS29MxACVGjWW3uMumm7qKZ13ZgG2g4trW61R6vO9-YHKbQvXYumFkznXRV3gHf78Nl0gFbORm8B1gak2wotXNVbCPfJTa1tgOFvv0s-ZtN18ZLO359fi8k8NYwImYqSQ6llVdemjK9luTA5GFNVY51JIzjLTMl5nXMjBBVCMJlpLkgJUua6NMDuksfz3p13Xz2ETm1c79t4UlHOOcOSUhFdo7PLeBeCh1rtfLPV_qgIVqd41SledYk3AvIMHBoLx3_cajJ9W_yx3yx1gEI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Yang, Fu</creator><creator>Dong, Lirong</creator><creator>Jang, Dongju</creator><creator>Saparov, Begench</creator><creator>Tam, Kai Cheong</creator><creator>Zhang, Kaicheng</creator><creator>Li, Ning</creator><creator>Brabec, Christoph J.</creator><creator>Egelhaaf, Hans‐Joachim</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7673-8026</orcidid></search><sort><creationdate>20210701</creationdate><title>Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules</title><author>Yang, Fu ; Dong, Lirong ; Jang, Dongju ; Saparov, Begench ; Tam, Kai Cheong ; Zhang, Kaicheng ; Li, Ning ; Brabec, Christoph J. ; Egelhaaf, Hans‐Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-7b5eba9dffcb210487c8eccdd6a49c7534cb55f85c772777394a571be998abce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>carbon electrodes</topic><topic>Combinatorial analysis</topic><topic>Commercialization</topic><topic>doctor blades</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Engineering</topic><topic>fully printed devices</topic><topic>long‐term stability</topic><topic>Low temperature</topic><topic>Modules</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Planar structures</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Fu</creatorcontrib><creatorcontrib>Dong, Lirong</creatorcontrib><creatorcontrib>Jang, Dongju</creatorcontrib><creatorcontrib>Saparov, Begench</creatorcontrib><creatorcontrib>Tam, Kai Cheong</creatorcontrib><creatorcontrib>Zhang, Kaicheng</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><creatorcontrib>Egelhaaf, Hans‐Joachim</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Fu</au><au>Dong, Lirong</au><au>Jang, Dongju</au><au>Saparov, Begench</au><au>Tam, Kai Cheong</au><au>Zhang, Kaicheng</au><au>Li, Ning</au><au>Brabec, Christoph J.</au><au>Egelhaaf, Hans‐Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules</atitle><jtitle>Advanced energy materials</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>28</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSCs with carbon as the top electrode (carbon‐PSCs) fully printed at fairly low temperature by using cheap materials under ambient conditions, thus meeting the requirements for scalable production on an industrial level. High‐quality perovskite layers are achieved by using a combinatorial engineering concept, including solvent engineering, additive engineering, and processing engineering. The optimized carbon‐PSCs with all layers including electron transport layer, perovskite, hole transport layer, and carbon electrode which are printed under ambient conditions show efficiencies exceeding 18% with enhanced stability, retaining 100% of their initial efficiency after 5000 h in a humid atmosphere. Finally, large‐area perovskite modules are successfully obtained and outstanding performance is shown with an efficiency of 15.3% by optimizing the femtosecond laser parameters for the P2 line patterning. These results represent important progress toward fully printed planar carbon electrode perovskite devices as a promising approach for the scaling up and worldwide application of PSCs. The fabrication of fully printed and cost‐efficient perovskite solar cells in ambient air–as required for an industrial scalable process is reported. Through multi‐objective optimization, fully printed carbon electrode perovskite solar cells and modules are obtained, providing a stable power conversion efficiency of 18.1% and 15.3%, respectively, which is the highest performance of fully printed perovskite devices reported so far.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202101219</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7673-8026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-07, Vol.11 (28), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2555309227
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
carbon electrodes
Combinatorial analysis
Commercialization
doctor blades
Electrodes
Electron transport
Engineering
fully printed devices
long‐term stability
Low temperature
Modules
perovskite solar cells
Perovskites
Photovoltaic cells
Planar structures
Solar cells
title Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature%20Processed%20Fully%20Printed%20Efficient%20Planar%20Structure%20Carbon%20Electrode%20Perovskite%20Solar%20Cells%20and%20Modules&rft.jtitle=Advanced%20energy%20materials&rft.au=Yang,%20Fu&rft.date=2021-07-01&rft.volume=11&rft.issue=28&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202101219&rft_dat=%3Cproquest_cross%3E2555309227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555309227&rft_id=info:pmid/&rfr_iscdi=true