Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules
Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSC...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-07, Vol.11 (28), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Yang, Fu Dong, Lirong Jang, Dongju Saparov, Begench Tam, Kai Cheong Zhang, Kaicheng Li, Ning Brabec, Christoph J. Egelhaaf, Hans‐Joachim |
description | Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSCs with carbon as the top electrode (carbon‐PSCs) fully printed at fairly low temperature by using cheap materials under ambient conditions, thus meeting the requirements for scalable production on an industrial level. High‐quality perovskite layers are achieved by using a combinatorial engineering concept, including solvent engineering, additive engineering, and processing engineering. The optimized carbon‐PSCs with all layers including electron transport layer, perovskite, hole transport layer, and carbon electrode which are printed under ambient conditions show efficiencies exceeding 18% with enhanced stability, retaining 100% of their initial efficiency after 5000 h in a humid atmosphere. Finally, large‐area perovskite modules are successfully obtained and outstanding performance is shown with an efficiency of 15.3% by optimizing the femtosecond laser parameters for the P2 line patterning. These results represent important progress toward fully printed planar carbon electrode perovskite devices as a promising approach for the scaling up and worldwide application of PSCs.
The fabrication of fully printed and cost‐efficient perovskite solar cells in ambient air–as required for an industrial scalable process is reported. Through multi‐objective optimization, fully printed carbon electrode perovskite solar cells and modules are obtained, providing a stable power conversion efficiency of 18.1% and 15.3%, respectively, which is the highest performance of fully printed perovskite devices reported so far. |
doi_str_mv | 10.1002/aenm.202101219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555309227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555309227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-7b5eba9dffcb210487c8eccdd6a49c7534cb55f85c772777394a571be998abce3</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxTdGE4ly9dzE82I_tnR7JBtQE1AS8Nx0u7PJYtliuwvhv7eIwaNzmXnJ-81kXpI8EDwiGNMnDe12RDElmFAir5IBGZMsHecZvr7MjN4mwxA2OFYmCWZskOzn7oDWsN2B113vAS29MxACVGjWW3uMumm7qKZ13ZgG2g4trW61R6vO9-YHKbQvXYumFkznXRV3gHf78Nl0gFbORm8B1gak2wotXNVbCPfJTa1tgOFvv0s-ZtN18ZLO359fi8k8NYwImYqSQ6llVdemjK9luTA5GFNVY51JIzjLTMl5nXMjBBVCMJlpLkgJUua6NMDuksfz3p13Xz2ETm1c79t4UlHOOcOSUhFdo7PLeBeCh1rtfLPV_qgIVqd41SledYk3AvIMHBoLx3_cajJ9W_yx3yx1gEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555309227</pqid></control><display><type>article</type><title>Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Fu ; Dong, Lirong ; Jang, Dongju ; Saparov, Begench ; Tam, Kai Cheong ; Zhang, Kaicheng ; Li, Ning ; Brabec, Christoph J. ; Egelhaaf, Hans‐Joachim</creator><creatorcontrib>Yang, Fu ; Dong, Lirong ; Jang, Dongju ; Saparov, Begench ; Tam, Kai Cheong ; Zhang, Kaicheng ; Li, Ning ; Brabec, Christoph J. ; Egelhaaf, Hans‐Joachim</creatorcontrib><description>Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSCs with carbon as the top electrode (carbon‐PSCs) fully printed at fairly low temperature by using cheap materials under ambient conditions, thus meeting the requirements for scalable production on an industrial level. High‐quality perovskite layers are achieved by using a combinatorial engineering concept, including solvent engineering, additive engineering, and processing engineering. The optimized carbon‐PSCs with all layers including electron transport layer, perovskite, hole transport layer, and carbon electrode which are printed under ambient conditions show efficiencies exceeding 18% with enhanced stability, retaining 100% of their initial efficiency after 5000 h in a humid atmosphere. Finally, large‐area perovskite modules are successfully obtained and outstanding performance is shown with an efficiency of 15.3% by optimizing the femtosecond laser parameters for the P2 line patterning. These results represent important progress toward fully printed planar carbon electrode perovskite devices as a promising approach for the scaling up and worldwide application of PSCs.
The fabrication of fully printed and cost‐efficient perovskite solar cells in ambient air–as required for an industrial scalable process is reported. Through multi‐objective optimization, fully printed carbon electrode perovskite solar cells and modules are obtained, providing a stable power conversion efficiency of 18.1% and 15.3%, respectively, which is the highest performance of fully printed perovskite devices reported so far.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202101219</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; carbon electrodes ; Combinatorial analysis ; Commercialization ; doctor blades ; Electrodes ; Electron transport ; Engineering ; fully printed devices ; long‐term stability ; Low temperature ; Modules ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Planar structures ; Solar cells</subject><ispartof>Advanced energy materials, 2021-07, Vol.11 (28), p.n/a</ispartof><rights>2021 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-7b5eba9dffcb210487c8eccdd6a49c7534cb55f85c772777394a571be998abce3</citedby><cites>FETCH-LOGICAL-c3179-7b5eba9dffcb210487c8eccdd6a49c7534cb55f85c772777394a571be998abce3</cites><orcidid>0000-0001-7673-8026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202101219$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202101219$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Yang, Fu</creatorcontrib><creatorcontrib>Dong, Lirong</creatorcontrib><creatorcontrib>Jang, Dongju</creatorcontrib><creatorcontrib>Saparov, Begench</creatorcontrib><creatorcontrib>Tam, Kai Cheong</creatorcontrib><creatorcontrib>Zhang, Kaicheng</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><creatorcontrib>Egelhaaf, Hans‐Joachim</creatorcontrib><title>Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules</title><title>Advanced energy materials</title><description>Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSCs with carbon as the top electrode (carbon‐PSCs) fully printed at fairly low temperature by using cheap materials under ambient conditions, thus meeting the requirements for scalable production on an industrial level. High‐quality perovskite layers are achieved by using a combinatorial engineering concept, including solvent engineering, additive engineering, and processing engineering. The optimized carbon‐PSCs with all layers including electron transport layer, perovskite, hole transport layer, and carbon electrode which are printed under ambient conditions show efficiencies exceeding 18% with enhanced stability, retaining 100% of their initial efficiency after 5000 h in a humid atmosphere. Finally, large‐area perovskite modules are successfully obtained and outstanding performance is shown with an efficiency of 15.3% by optimizing the femtosecond laser parameters for the P2 line patterning. These results represent important progress toward fully printed planar carbon electrode perovskite devices as a promising approach for the scaling up and worldwide application of PSCs.
The fabrication of fully printed and cost‐efficient perovskite solar cells in ambient air–as required for an industrial scalable process is reported. Through multi‐objective optimization, fully printed carbon electrode perovskite solar cells and modules are obtained, providing a stable power conversion efficiency of 18.1% and 15.3%, respectively, which is the highest performance of fully printed perovskite devices reported so far.</description><subject>Carbon</subject><subject>carbon electrodes</subject><subject>Combinatorial analysis</subject><subject>Commercialization</subject><subject>doctor blades</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Engineering</subject><subject>fully printed devices</subject><subject>long‐term stability</subject><subject>Low temperature</subject><subject>Modules</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Planar structures</subject><subject>Solar cells</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1PAjEQxTdGE4ly9dzE82I_tnR7JBtQE1AS8Nx0u7PJYtliuwvhv7eIwaNzmXnJ-81kXpI8EDwiGNMnDe12RDElmFAir5IBGZMsHecZvr7MjN4mwxA2OFYmCWZskOzn7oDWsN2B113vAS29MxACVGjWW3uMumm7qKZ13ZgG2g4trW61R6vO9-YHKbQvXYumFkznXRV3gHf78Nl0gFbORm8B1gak2wotXNVbCPfJTa1tgOFvv0s-ZtN18ZLO359fi8k8NYwImYqSQ6llVdemjK9luTA5GFNVY51JIzjLTMl5nXMjBBVCMJlpLkgJUua6NMDuksfz3p13Xz2ETm1c79t4UlHOOcOSUhFdo7PLeBeCh1rtfLPV_qgIVqd41SledYk3AvIMHBoLx3_cajJ9W_yx3yx1gEI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Yang, Fu</creator><creator>Dong, Lirong</creator><creator>Jang, Dongju</creator><creator>Saparov, Begench</creator><creator>Tam, Kai Cheong</creator><creator>Zhang, Kaicheng</creator><creator>Li, Ning</creator><creator>Brabec, Christoph J.</creator><creator>Egelhaaf, Hans‐Joachim</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7673-8026</orcidid></search><sort><creationdate>20210701</creationdate><title>Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules</title><author>Yang, Fu ; Dong, Lirong ; Jang, Dongju ; Saparov, Begench ; Tam, Kai Cheong ; Zhang, Kaicheng ; Li, Ning ; Brabec, Christoph J. ; Egelhaaf, Hans‐Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-7b5eba9dffcb210487c8eccdd6a49c7534cb55f85c772777394a571be998abce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>carbon electrodes</topic><topic>Combinatorial analysis</topic><topic>Commercialization</topic><topic>doctor blades</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Engineering</topic><topic>fully printed devices</topic><topic>long‐term stability</topic><topic>Low temperature</topic><topic>Modules</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Planar structures</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Fu</creatorcontrib><creatorcontrib>Dong, Lirong</creatorcontrib><creatorcontrib>Jang, Dongju</creatorcontrib><creatorcontrib>Saparov, Begench</creatorcontrib><creatorcontrib>Tam, Kai Cheong</creatorcontrib><creatorcontrib>Zhang, Kaicheng</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><creatorcontrib>Egelhaaf, Hans‐Joachim</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Fu</au><au>Dong, Lirong</au><au>Jang, Dongju</au><au>Saparov, Begench</au><au>Tam, Kai Cheong</au><au>Zhang, Kaicheng</au><au>Li, Ning</au><au>Brabec, Christoph J.</au><au>Egelhaaf, Hans‐Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules</atitle><jtitle>Advanced energy materials</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>28</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar n–i–p structure PSCs with carbon as the top electrode (carbon‐PSCs) fully printed at fairly low temperature by using cheap materials under ambient conditions, thus meeting the requirements for scalable production on an industrial level. High‐quality perovskite layers are achieved by using a combinatorial engineering concept, including solvent engineering, additive engineering, and processing engineering. The optimized carbon‐PSCs with all layers including electron transport layer, perovskite, hole transport layer, and carbon electrode which are printed under ambient conditions show efficiencies exceeding 18% with enhanced stability, retaining 100% of their initial efficiency after 5000 h in a humid atmosphere. Finally, large‐area perovskite modules are successfully obtained and outstanding performance is shown with an efficiency of 15.3% by optimizing the femtosecond laser parameters for the P2 line patterning. These results represent important progress toward fully printed planar carbon electrode perovskite devices as a promising approach for the scaling up and worldwide application of PSCs.
The fabrication of fully printed and cost‐efficient perovskite solar cells in ambient air–as required for an industrial scalable process is reported. Through multi‐objective optimization, fully printed carbon electrode perovskite solar cells and modules are obtained, providing a stable power conversion efficiency of 18.1% and 15.3%, respectively, which is the highest performance of fully printed perovskite devices reported so far.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202101219</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7673-8026</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-07, Vol.11 (28), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2555309227 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon carbon electrodes Combinatorial analysis Commercialization doctor blades Electrodes Electron transport Engineering fully printed devices long‐term stability Low temperature Modules perovskite solar cells Perovskites Photovoltaic cells Planar structures Solar cells |
title | Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature%20Processed%20Fully%20Printed%20Efficient%20Planar%20Structure%20Carbon%20Electrode%20Perovskite%20Solar%20Cells%20and%20Modules&rft.jtitle=Advanced%20energy%20materials&rft.au=Yang,%20Fu&rft.date=2021-07-01&rft.volume=11&rft.issue=28&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202101219&rft_dat=%3Cproquest_cross%3E2555309227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555309227&rft_id=info:pmid/&rfr_iscdi=true |