Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships

This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2021-08, Vol.28 (12), p.7651-7662
Hauptverfasser: Yuan, Tianzhong, Zeng, Jinsong, Wang, Bin, Cheng, Zheng, Chen, Kefu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7662
container_issue 12
container_start_page 7651
container_title Cellulose (London)
container_volume 28
creator Yuan, Tianzhong
Zeng, Jinsong
Wang, Bin
Cheng, Zheng
Chen, Kefu
description This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. The squashed cellulose with large size and small aspect ratio had low entanglement capacity, thus forming a weak fiber network. The corresponding suspension exhibited low viscosity, weak elastic behavior, small yield stress, and low dynamic stability. An obviously increasing aspect ratio and entanglement capacity were observed with increasing mechanical fibrillation, resulting in entangled fiber network structure. Hence, the cellulosic fiber suspension obtained by more mechanical fibrillation exhibited higher viscosity, stronger gel-like behavior, and bigger yield stress. Moreover, the extremely entangled fiber network structure has better anti-deformation capacity and recovery capacity. We revealed the fundamental insights into the relationship between morphologies and rheological properties of cellulosic fiber, paving the way for designing cellulose-based materials.
doi_str_mv 10.1007/s10570-021-04034-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555233489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555233489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c4afae9973b05b6c7911bb5d190404c41c02a56389d713f77ee5ed39bc64f1fb3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgqMRvOdhzHbKjin6jEAhKb5bhO48qNg50O-fa4DRIb053uvXd3-iF0TeCWAIi7RIALwEAJhgJYgccTNCNcUFxV9OsUzUCWMstMnqOLlLYAIAUlM_S2tN7vfUjOLBpX23i_2FnT6s4Z7Q-T6LzXgwsd3oXYt8GHzYhja4_NItpJTK3r0yU6a7RP9uq3ztHn0-PH8gWv3p9flw8rbFjJBmwK3WgrpWA18Lo0QhJS13xNZH69MAUxQDUvWSXXgrBGCGu5XTNZm7JoSFOzObqZ9vYxfO9tGtQ27GOXTyrKOaeMFZXMLjq5TAwpRduoPrqdjqMioA7Q1ARNZWjqCE2NOcSmUMrmbmPj3-p_Uj-EsHFf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555233489</pqid></control><display><type>article</type><title>Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships</title><source>SpringerNature Journals</source><creator>Yuan, Tianzhong ; Zeng, Jinsong ; Wang, Bin ; Cheng, Zheng ; Chen, Kefu</creator><creatorcontrib>Yuan, Tianzhong ; Zeng, Jinsong ; Wang, Bin ; Cheng, Zheng ; Chen, Kefu</creatorcontrib><description>This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. The squashed cellulose with large size and small aspect ratio had low entanglement capacity, thus forming a weak fiber network. The corresponding suspension exhibited low viscosity, weak elastic behavior, small yield stress, and low dynamic stability. An obviously increasing aspect ratio and entanglement capacity were observed with increasing mechanical fibrillation, resulting in entangled fiber network structure. Hence, the cellulosic fiber suspension obtained by more mechanical fibrillation exhibited higher viscosity, stronger gel-like behavior, and bigger yield stress. Moreover, the extremely entangled fiber network structure has better anti-deformation capacity and recovery capacity. We revealed the fundamental insights into the relationship between morphologies and rheological properties of cellulosic fiber, paving the way for designing cellulose-based materials.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-04034-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aspect ratio ; Bioorganic Chemistry ; Cellulose ; Cellulose fibers ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Dynamic stability ; Elasticity ; Entanglement ; Fibrillation ; Glass ; Morphology ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Rheological properties ; Rheology ; Sustainable Development ; Viscosity ; Yield strength ; Yield stress</subject><ispartof>Cellulose (London), 2021-08, Vol.28 (12), p.7651-7662</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c4afae9973b05b6c7911bb5d190404c41c02a56389d713f77ee5ed39bc64f1fb3</citedby><cites>FETCH-LOGICAL-c363t-c4afae9973b05b6c7911bb5d190404c41c02a56389d713f77ee5ed39bc64f1fb3</cites><orcidid>0000-0002-0335-3405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-021-04034-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-021-04034-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yuan, Tianzhong</creatorcontrib><creatorcontrib>Zeng, Jinsong</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Cheng, Zheng</creatorcontrib><creatorcontrib>Chen, Kefu</creatorcontrib><title>Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. The squashed cellulose with large size and small aspect ratio had low entanglement capacity, thus forming a weak fiber network. The corresponding suspension exhibited low viscosity, weak elastic behavior, small yield stress, and low dynamic stability. An obviously increasing aspect ratio and entanglement capacity were observed with increasing mechanical fibrillation, resulting in entangled fiber network structure. Hence, the cellulosic fiber suspension obtained by more mechanical fibrillation exhibited higher viscosity, stronger gel-like behavior, and bigger yield stress. Moreover, the extremely entangled fiber network structure has better anti-deformation capacity and recovery capacity. We revealed the fundamental insights into the relationship between morphologies and rheological properties of cellulosic fiber, paving the way for designing cellulose-based materials.</description><subject>Aspect ratio</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Dynamic stability</subject><subject>Elasticity</subject><subject>Entanglement</subject><subject>Fibrillation</subject><subject>Glass</subject><subject>Morphology</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Sustainable Development</subject><subject>Viscosity</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgqMRvOdhzHbKjin6jEAhKb5bhO48qNg50O-fa4DRIb053uvXd3-iF0TeCWAIi7RIALwEAJhgJYgccTNCNcUFxV9OsUzUCWMstMnqOLlLYAIAUlM_S2tN7vfUjOLBpX23i_2FnT6s4Z7Q-T6LzXgwsd3oXYt8GHzYhja4_NItpJTK3r0yU6a7RP9uq3ztHn0-PH8gWv3p9flw8rbFjJBmwK3WgrpWA18Lo0QhJS13xNZH69MAUxQDUvWSXXgrBGCGu5XTNZm7JoSFOzObqZ9vYxfO9tGtQ27GOXTyrKOaeMFZXMLjq5TAwpRduoPrqdjqMioA7Q1ARNZWjqCE2NOcSmUMrmbmPj3-p_Uj-EsHFf</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Yuan, Tianzhong</creator><creator>Zeng, Jinsong</creator><creator>Wang, Bin</creator><creator>Cheng, Zheng</creator><creator>Chen, Kefu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0335-3405</orcidid></search><sort><creationdate>20210801</creationdate><title>Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships</title><author>Yuan, Tianzhong ; Zeng, Jinsong ; Wang, Bin ; Cheng, Zheng ; Chen, Kefu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c4afae9973b05b6c7911bb5d190404c41c02a56389d713f77ee5ed39bc64f1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aspect ratio</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Dynamic stability</topic><topic>Elasticity</topic><topic>Entanglement</topic><topic>Fibrillation</topic><topic>Glass</topic><topic>Morphology</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Sustainable Development</topic><topic>Viscosity</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Tianzhong</creatorcontrib><creatorcontrib>Zeng, Jinsong</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Cheng, Zheng</creatorcontrib><creatorcontrib>Chen, Kefu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Tianzhong</au><au>Zeng, Jinsong</au><au>Wang, Bin</au><au>Cheng, Zheng</au><au>Chen, Kefu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>28</volume><issue>12</issue><spage>7651</spage><epage>7662</epage><pages>7651-7662</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. The squashed cellulose with large size and small aspect ratio had low entanglement capacity, thus forming a weak fiber network. The corresponding suspension exhibited low viscosity, weak elastic behavior, small yield stress, and low dynamic stability. An obviously increasing aspect ratio and entanglement capacity were observed with increasing mechanical fibrillation, resulting in entangled fiber network structure. Hence, the cellulosic fiber suspension obtained by more mechanical fibrillation exhibited higher viscosity, stronger gel-like behavior, and bigger yield stress. Moreover, the extremely entangled fiber network structure has better anti-deformation capacity and recovery capacity. We revealed the fundamental insights into the relationship between morphologies and rheological properties of cellulosic fiber, paving the way for designing cellulose-based materials.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-04034-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0335-3405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2021-08, Vol.28 (12), p.7651-7662
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2555233489
source SpringerNature Journals
subjects Aspect ratio
Bioorganic Chemistry
Cellulose
Cellulose fibers
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Dynamic stability
Elasticity
Entanglement
Fibrillation
Glass
Morphology
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Rheological properties
Rheology
Sustainable Development
Viscosity
Yield strength
Yield stress
title Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulosic%20fiber:%20mechanical%20fibrillation-morphology-rheology%20relationships&rft.jtitle=Cellulose%20(London)&rft.au=Yuan,%20Tianzhong&rft.date=2021-08-01&rft.volume=28&rft.issue=12&rft.spage=7651&rft.epage=7662&rft.pages=7651-7662&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-04034-y&rft_dat=%3Cproquest_cross%3E2555233489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555233489&rft_id=info:pmid/&rfr_iscdi=true