Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships
This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellul...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2021-08, Vol.28 (12), p.7651-7662 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7662 |
---|---|
container_issue | 12 |
container_start_page | 7651 |
container_title | Cellulose (London) |
container_volume | 28 |
creator | Yuan, Tianzhong Zeng, Jinsong Wang, Bin Cheng, Zheng Chen, Kefu |
description | This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. The squashed cellulose with large size and small aspect ratio had low entanglement capacity, thus forming a weak fiber network. The corresponding suspension exhibited low viscosity, weak elastic behavior, small yield stress, and low dynamic stability. An obviously increasing aspect ratio and entanglement capacity were observed with increasing mechanical fibrillation, resulting in entangled fiber network structure. Hence, the cellulosic fiber suspension obtained by more mechanical fibrillation exhibited higher viscosity, stronger gel-like behavior, and bigger yield stress. Moreover, the extremely entangled fiber network structure has better anti-deformation capacity and recovery capacity. We revealed the fundamental insights into the relationship between morphologies and rheological properties of cellulosic fiber, paving the way for designing cellulose-based materials. |
doi_str_mv | 10.1007/s10570-021-04034-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555233489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555233489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c4afae9973b05b6c7911bb5d190404c41c02a56389d713f77ee5ed39bc64f1fb3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgqMRvOdhzHbKjin6jEAhKb5bhO48qNg50O-fa4DRIb053uvXd3-iF0TeCWAIi7RIALwEAJhgJYgccTNCNcUFxV9OsUzUCWMstMnqOLlLYAIAUlM_S2tN7vfUjOLBpX23i_2FnT6s4Z7Q-T6LzXgwsd3oXYt8GHzYhja4_NItpJTK3r0yU6a7RP9uq3ztHn0-PH8gWv3p9flw8rbFjJBmwK3WgrpWA18Lo0QhJS13xNZH69MAUxQDUvWSXXgrBGCGu5XTNZm7JoSFOzObqZ9vYxfO9tGtQ27GOXTyrKOaeMFZXMLjq5TAwpRduoPrqdjqMioA7Q1ARNZWjqCE2NOcSmUMrmbmPj3-p_Uj-EsHFf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555233489</pqid></control><display><type>article</type><title>Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships</title><source>SpringerNature Journals</source><creator>Yuan, Tianzhong ; Zeng, Jinsong ; Wang, Bin ; Cheng, Zheng ; Chen, Kefu</creator><creatorcontrib>Yuan, Tianzhong ; Zeng, Jinsong ; Wang, Bin ; Cheng, Zheng ; Chen, Kefu</creatorcontrib><description>This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. The squashed cellulose with large size and small aspect ratio had low entanglement capacity, thus forming a weak fiber network. The corresponding suspension exhibited low viscosity, weak elastic behavior, small yield stress, and low dynamic stability. An obviously increasing aspect ratio and entanglement capacity were observed with increasing mechanical fibrillation, resulting in entangled fiber network structure. Hence, the cellulosic fiber suspension obtained by more mechanical fibrillation exhibited higher viscosity, stronger gel-like behavior, and bigger yield stress. Moreover, the extremely entangled fiber network structure has better anti-deformation capacity and recovery capacity. We revealed the fundamental insights into the relationship between morphologies and rheological properties of cellulosic fiber, paving the way for designing cellulose-based materials.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-04034-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aspect ratio ; Bioorganic Chemistry ; Cellulose ; Cellulose fibers ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Dynamic stability ; Elasticity ; Entanglement ; Fibrillation ; Glass ; Morphology ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Rheological properties ; Rheology ; Sustainable Development ; Viscosity ; Yield strength ; Yield stress</subject><ispartof>Cellulose (London), 2021-08, Vol.28 (12), p.7651-7662</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c4afae9973b05b6c7911bb5d190404c41c02a56389d713f77ee5ed39bc64f1fb3</citedby><cites>FETCH-LOGICAL-c363t-c4afae9973b05b6c7911bb5d190404c41c02a56389d713f77ee5ed39bc64f1fb3</cites><orcidid>0000-0002-0335-3405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-021-04034-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-021-04034-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yuan, Tianzhong</creatorcontrib><creatorcontrib>Zeng, Jinsong</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Cheng, Zheng</creatorcontrib><creatorcontrib>Chen, Kefu</creatorcontrib><title>Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. The squashed cellulose with large size and small aspect ratio had low entanglement capacity, thus forming a weak fiber network. The corresponding suspension exhibited low viscosity, weak elastic behavior, small yield stress, and low dynamic stability. An obviously increasing aspect ratio and entanglement capacity were observed with increasing mechanical fibrillation, resulting in entangled fiber network structure. Hence, the cellulosic fiber suspension obtained by more mechanical fibrillation exhibited higher viscosity, stronger gel-like behavior, and bigger yield stress. Moreover, the extremely entangled fiber network structure has better anti-deformation capacity and recovery capacity. We revealed the fundamental insights into the relationship between morphologies and rheological properties of cellulosic fiber, paving the way for designing cellulose-based materials.</description><subject>Aspect ratio</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Dynamic stability</subject><subject>Elasticity</subject><subject>Entanglement</subject><subject>Fibrillation</subject><subject>Glass</subject><subject>Morphology</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Sustainable Development</subject><subject>Viscosity</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgqMRvOdhzHbKjin6jEAhKb5bhO48qNg50O-fa4DRIb053uvXd3-iF0TeCWAIi7RIALwEAJhgJYgccTNCNcUFxV9OsUzUCWMstMnqOLlLYAIAUlM_S2tN7vfUjOLBpX23i_2FnT6s4Z7Q-T6LzXgwsd3oXYt8GHzYhja4_NItpJTK3r0yU6a7RP9uq3ztHn0-PH8gWv3p9flw8rbFjJBmwK3WgrpWA18Lo0QhJS13xNZH69MAUxQDUvWSXXgrBGCGu5XTNZm7JoSFOzObqZ9vYxfO9tGtQ27GOXTyrKOaeMFZXMLjq5TAwpRduoPrqdjqMioA7Q1ARNZWjqCE2NOcSmUMrmbmPj3-p_Uj-EsHFf</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Yuan, Tianzhong</creator><creator>Zeng, Jinsong</creator><creator>Wang, Bin</creator><creator>Cheng, Zheng</creator><creator>Chen, Kefu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0335-3405</orcidid></search><sort><creationdate>20210801</creationdate><title>Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships</title><author>Yuan, Tianzhong ; Zeng, Jinsong ; Wang, Bin ; Cheng, Zheng ; Chen, Kefu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c4afae9973b05b6c7911bb5d190404c41c02a56389d713f77ee5ed39bc64f1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aspect ratio</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Dynamic stability</topic><topic>Elasticity</topic><topic>Entanglement</topic><topic>Fibrillation</topic><topic>Glass</topic><topic>Morphology</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Sustainable Development</topic><topic>Viscosity</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Tianzhong</creatorcontrib><creatorcontrib>Zeng, Jinsong</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Cheng, Zheng</creatorcontrib><creatorcontrib>Chen, Kefu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Tianzhong</au><au>Zeng, Jinsong</au><au>Wang, Bin</au><au>Cheng, Zheng</au><au>Chen, Kefu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>28</volume><issue>12</issue><spage>7651</spage><epage>7662</epage><pages>7651-7662</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>This study aims to investigate the relationship between mechanical fibrillation, morphological properties, and rheological behavior of cellulosic fiber. Three types of cellulosic fibers were obtained by adjusting mechanical fibrillation, namely squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. The squashed cellulose with large size and small aspect ratio had low entanglement capacity, thus forming a weak fiber network. The corresponding suspension exhibited low viscosity, weak elastic behavior, small yield stress, and low dynamic stability. An obviously increasing aspect ratio and entanglement capacity were observed with increasing mechanical fibrillation, resulting in entangled fiber network structure. Hence, the cellulosic fiber suspension obtained by more mechanical fibrillation exhibited higher viscosity, stronger gel-like behavior, and bigger yield stress. Moreover, the extremely entangled fiber network structure has better anti-deformation capacity and recovery capacity. We revealed the fundamental insights into the relationship between morphologies and rheological properties of cellulosic fiber, paving the way for designing cellulose-based materials.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-04034-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0335-3405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2021-08, Vol.28 (12), p.7651-7662 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2555233489 |
source | SpringerNature Journals |
subjects | Aspect ratio Bioorganic Chemistry Cellulose Cellulose fibers Ceramics Chemistry Chemistry and Materials Science Composites Dynamic stability Elasticity Entanglement Fibrillation Glass Morphology Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences Rheological properties Rheology Sustainable Development Viscosity Yield strength Yield stress |
title | Cellulosic fiber: mechanical fibrillation-morphology-rheology relationships |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulosic%20fiber:%20mechanical%20fibrillation-morphology-rheology%20relationships&rft.jtitle=Cellulose%20(London)&rft.au=Yuan,%20Tianzhong&rft.date=2021-08-01&rft.volume=28&rft.issue=12&rft.spage=7651&rft.epage=7662&rft.pages=7651-7662&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-04034-y&rft_dat=%3Cproquest_cross%3E2555233489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555233489&rft_id=info:pmid/&rfr_iscdi=true |