On Discrimination Between the Lindley and xgamma Distributions

For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of data science 2021-09, Vol.8 (3), p.559-575
Hauptverfasser: Sen, Subhradev, Al-Mofleh, Hazem, Maiti, Sudhansu S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 575
container_issue 3
container_start_page 559
container_title Annals of data science
container_volume 8
creator Sen, Subhradev
Al-Mofleh, Hazem
Maiti, Sudhansu S.
description For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of the maximized likelihoods in choosing between the Lindley and xgamma distributions. Asymptotic distributions of the ratio of the maximized likelihoods are obtained and those are utilized to determine the minimum sample size required to discriminate between these two distributions for user specified probability of correct selection and tolerance limit.
doi_str_mv 10.1007/s40745-020-00243-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555230634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555230634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2347-937fa261a1e02ca2a2320446f9ece980a3233a1d457dd979278f85f8cdb260b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CKxGw4n-04WZCgfEqRunS3nMQpqRqn2Kmg_x6HINiY7obnfU_3EHLJ4JoBqJsgQAlJAYECoOBUnZAZsjyjMmN4-ruDOCeLELYQKSYAuZyR25VLHtpQ-bZrnRna3iX3dviw1iXDm02K1tU7e0yMq5PPjek6M9KDb8vDyIYLctaYXbCLnzkn66fH9fKFFqvn1-VdQSvkQtGcq8ZgygyzgJVBgxxBiLTJbWXzDAxHzg2rhVR1nascVdZkssmqusQUSj4nV1Pt3vfvBxsGve0P3sWLGqWUyCHlIlI4UZXvQ_C20fv4lvFHzUCPpvRkSkdT-tuUVjHEp1CIsNtY_1f9T-oLszJp2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555230634</pqid></control><display><type>article</type><title>On Discrimination Between the Lindley and xgamma Distributions</title><source>Springer Online Journals</source><creator>Sen, Subhradev ; Al-Mofleh, Hazem ; Maiti, Sudhansu S.</creator><creatorcontrib>Sen, Subhradev ; Al-Mofleh, Hazem ; Maiti, Sudhansu S.</creatorcontrib><description>For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of the maximized likelihoods in choosing between the Lindley and xgamma distributions. Asymptotic distributions of the ratio of the maximized likelihoods are obtained and those are utilized to determine the minimum sample size required to discriminate between these two distributions for user specified probability of correct selection and tolerance limit.</description><identifier>ISSN: 2198-5804</identifier><identifier>EISSN: 2198-5812</identifier><identifier>DOI: 10.1007/s40745-020-00243-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Business and Management ; Datasets ; Economics ; Finance ; Insurance ; Management ; Random variables ; Science ; Statistics ; Statistics for Business</subject><ispartof>Annals of data science, 2021-09, Vol.8 (3), p.559-575</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2347-937fa261a1e02ca2a2320446f9ece980a3233a1d457dd979278f85f8cdb260b3</citedby><cites>FETCH-LOGICAL-c2347-937fa261a1e02ca2a2320446f9ece980a3233a1d457dd979278f85f8cdb260b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40745-020-00243-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40745-020-00243-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Sen, Subhradev</creatorcontrib><creatorcontrib>Al-Mofleh, Hazem</creatorcontrib><creatorcontrib>Maiti, Sudhansu S.</creatorcontrib><title>On Discrimination Between the Lindley and xgamma Distributions</title><title>Annals of data science</title><addtitle>Ann. Data. Sci</addtitle><description>For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of the maximized likelihoods in choosing between the Lindley and xgamma distributions. Asymptotic distributions of the ratio of the maximized likelihoods are obtained and those are utilized to determine the minimum sample size required to discriminate between these two distributions for user specified probability of correct selection and tolerance limit.</description><subject>Artificial Intelligence</subject><subject>Business and Management</subject><subject>Datasets</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Random variables</subject><subject>Science</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>2198-5804</issn><issn>2198-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAQhi0EElXpH2CKxGw4n-04WZCgfEqRunS3nMQpqRqn2Kmg_x6HINiY7obnfU_3EHLJ4JoBqJsgQAlJAYECoOBUnZAZsjyjMmN4-ruDOCeLELYQKSYAuZyR25VLHtpQ-bZrnRna3iX3dviw1iXDm02K1tU7e0yMq5PPjek6M9KDb8vDyIYLctaYXbCLnzkn66fH9fKFFqvn1-VdQSvkQtGcq8ZgygyzgJVBgxxBiLTJbWXzDAxHzg2rhVR1nascVdZkssmqusQUSj4nV1Pt3vfvBxsGve0P3sWLGqWUyCHlIlI4UZXvQ_C20fv4lvFHzUCPpvRkSkdT-tuUVjHEp1CIsNtY_1f9T-oLszJp2Q</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sen, Subhradev</creator><creator>Al-Mofleh, Hazem</creator><creator>Maiti, Sudhansu S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>On Discrimination Between the Lindley and xgamma Distributions</title><author>Sen, Subhradev ; Al-Mofleh, Hazem ; Maiti, Sudhansu S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2347-937fa261a1e02ca2a2320446f9ece980a3233a1d457dd979278f85f8cdb260b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Business and Management</topic><topic>Datasets</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Random variables</topic><topic>Science</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Subhradev</creatorcontrib><creatorcontrib>Al-Mofleh, Hazem</creatorcontrib><creatorcontrib>Maiti, Sudhansu S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Subhradev</au><au>Al-Mofleh, Hazem</au><au>Maiti, Sudhansu S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Discrimination Between the Lindley and xgamma Distributions</atitle><jtitle>Annals of data science</jtitle><stitle>Ann. Data. Sci</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>8</volume><issue>3</issue><spage>559</spage><epage>575</epage><pages>559-575</pages><issn>2198-5804</issn><eissn>2198-5812</eissn><abstract>For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of the maximized likelihoods in choosing between the Lindley and xgamma distributions. Asymptotic distributions of the ratio of the maximized likelihoods are obtained and those are utilized to determine the minimum sample size required to discriminate between these two distributions for user specified probability of correct selection and tolerance limit.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40745-020-00243-7</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2198-5804
ispartof Annals of data science, 2021-09, Vol.8 (3), p.559-575
issn 2198-5804
2198-5812
language eng
recordid cdi_proquest_journals_2555230634
source Springer Online Journals
subjects Artificial Intelligence
Business and Management
Datasets
Economics
Finance
Insurance
Management
Random variables
Science
Statistics
Statistics for Business
title On Discrimination Between the Lindley and xgamma Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Discrimination%20Between%20the%20Lindley%20and%20xgamma%20Distributions&rft.jtitle=Annals%20of%20data%20science&rft.au=Sen,%20Subhradev&rft.date=2021-09-01&rft.volume=8&rft.issue=3&rft.spage=559&rft.epage=575&rft.pages=559-575&rft.issn=2198-5804&rft.eissn=2198-5812&rft_id=info:doi/10.1007/s40745-020-00243-7&rft_dat=%3Cproquest_cross%3E2555230634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555230634&rft_id=info:pmid/&rfr_iscdi=true