On Discrimination Between the Lindley and xgamma Distributions
For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of...
Gespeichert in:
Veröffentlicht in: | Annals of data science 2021-09, Vol.8 (3), p.559-575 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 575 |
---|---|
container_issue | 3 |
container_start_page | 559 |
container_title | Annals of data science |
container_volume | 8 |
creator | Sen, Subhradev Al-Mofleh, Hazem Maiti, Sudhansu S. |
description | For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of the maximized likelihoods in choosing between the Lindley and xgamma distributions. Asymptotic distributions of the ratio of the maximized likelihoods are obtained and those are utilized to determine the minimum sample size required to discriminate between these two distributions for user specified probability of correct selection and tolerance limit. |
doi_str_mv | 10.1007/s40745-020-00243-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2555230634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555230634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2347-937fa261a1e02ca2a2320446f9ece980a3233a1d457dd979278f85f8cdb260b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CKxGw4n-04WZCgfEqRunS3nMQpqRqn2Kmg_x6HINiY7obnfU_3EHLJ4JoBqJsgQAlJAYECoOBUnZAZsjyjMmN4-ruDOCeLELYQKSYAuZyR25VLHtpQ-bZrnRna3iX3dviw1iXDm02K1tU7e0yMq5PPjek6M9KDb8vDyIYLctaYXbCLnzkn66fH9fKFFqvn1-VdQSvkQtGcq8ZgygyzgJVBgxxBiLTJbWXzDAxHzg2rhVR1nascVdZkssmqusQUSj4nV1Pt3vfvBxsGve0P3sWLGqWUyCHlIlI4UZXvQ_C20fv4lvFHzUCPpvRkSkdT-tuUVjHEp1CIsNtY_1f9T-oLszJp2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555230634</pqid></control><display><type>article</type><title>On Discrimination Between the Lindley and xgamma Distributions</title><source>Springer Online Journals</source><creator>Sen, Subhradev ; Al-Mofleh, Hazem ; Maiti, Sudhansu S.</creator><creatorcontrib>Sen, Subhradev ; Al-Mofleh, Hazem ; Maiti, Sudhansu S.</creatorcontrib><description>For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of the maximized likelihoods in choosing between the Lindley and xgamma distributions. Asymptotic distributions of the ratio of the maximized likelihoods are obtained and those are utilized to determine the minimum sample size required to discriminate between these two distributions for user specified probability of correct selection and tolerance limit.</description><identifier>ISSN: 2198-5804</identifier><identifier>EISSN: 2198-5812</identifier><identifier>DOI: 10.1007/s40745-020-00243-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Business and Management ; Datasets ; Economics ; Finance ; Insurance ; Management ; Random variables ; Science ; Statistics ; Statistics for Business</subject><ispartof>Annals of data science, 2021-09, Vol.8 (3), p.559-575</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2347-937fa261a1e02ca2a2320446f9ece980a3233a1d457dd979278f85f8cdb260b3</citedby><cites>FETCH-LOGICAL-c2347-937fa261a1e02ca2a2320446f9ece980a3233a1d457dd979278f85f8cdb260b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40745-020-00243-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40745-020-00243-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Sen, Subhradev</creatorcontrib><creatorcontrib>Al-Mofleh, Hazem</creatorcontrib><creatorcontrib>Maiti, Sudhansu S.</creatorcontrib><title>On Discrimination Between the Lindley and xgamma Distributions</title><title>Annals of data science</title><addtitle>Ann. Data. Sci</addtitle><description>For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of the maximized likelihoods in choosing between the Lindley and xgamma distributions. Asymptotic distributions of the ratio of the maximized likelihoods are obtained and those are utilized to determine the minimum sample size required to discriminate between these two distributions for user specified probability of correct selection and tolerance limit.</description><subject>Artificial Intelligence</subject><subject>Business and Management</subject><subject>Datasets</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Random variables</subject><subject>Science</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>2198-5804</issn><issn>2198-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAQhi0EElXpH2CKxGw4n-04WZCgfEqRunS3nMQpqRqn2Kmg_x6HINiY7obnfU_3EHLJ4JoBqJsgQAlJAYECoOBUnZAZsjyjMmN4-ruDOCeLELYQKSYAuZyR25VLHtpQ-bZrnRna3iX3dviw1iXDm02K1tU7e0yMq5PPjek6M9KDb8vDyIYLctaYXbCLnzkn66fH9fKFFqvn1-VdQSvkQtGcq8ZgygyzgJVBgxxBiLTJbWXzDAxHzg2rhVR1nascVdZkssmqusQUSj4nV1Pt3vfvBxsGve0P3sWLGqWUyCHlIlI4UZXvQ_C20fv4lvFHzUCPpvRkSkdT-tuUVjHEp1CIsNtY_1f9T-oLszJp2Q</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sen, Subhradev</creator><creator>Al-Mofleh, Hazem</creator><creator>Maiti, Sudhansu S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>On Discrimination Between the Lindley and xgamma Distributions</title><author>Sen, Subhradev ; Al-Mofleh, Hazem ; Maiti, Sudhansu S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2347-937fa261a1e02ca2a2320446f9ece980a3233a1d457dd979278f85f8cdb260b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Business and Management</topic><topic>Datasets</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Random variables</topic><topic>Science</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Subhradev</creatorcontrib><creatorcontrib>Al-Mofleh, Hazem</creatorcontrib><creatorcontrib>Maiti, Sudhansu S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Subhradev</au><au>Al-Mofleh, Hazem</au><au>Maiti, Sudhansu S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Discrimination Between the Lindley and xgamma Distributions</atitle><jtitle>Annals of data science</jtitle><stitle>Ann. Data. Sci</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>8</volume><issue>3</issue><spage>559</spage><epage>575</epage><pages>559-575</pages><issn>2198-5804</issn><eissn>2198-5812</eissn><abstract>For a given data set the problem of selecting either Lindley or xgamma distribution with unknown parameter is investigated in this article. Both these distributions can be used quite effectively for analyzing skewed non-negative data and in modeling time-to-event data sets. We have used the ratio of the maximized likelihoods in choosing between the Lindley and xgamma distributions. Asymptotic distributions of the ratio of the maximized likelihoods are obtained and those are utilized to determine the minimum sample size required to discriminate between these two distributions for user specified probability of correct selection and tolerance limit.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40745-020-00243-7</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-5804 |
ispartof | Annals of data science, 2021-09, Vol.8 (3), p.559-575 |
issn | 2198-5804 2198-5812 |
language | eng |
recordid | cdi_proquest_journals_2555230634 |
source | Springer Online Journals |
subjects | Artificial Intelligence Business and Management Datasets Economics Finance Insurance Management Random variables Science Statistics Statistics for Business |
title | On Discrimination Between the Lindley and xgamma Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Discrimination%20Between%20the%20Lindley%20and%20xgamma%20Distributions&rft.jtitle=Annals%20of%20data%20science&rft.au=Sen,%20Subhradev&rft.date=2021-09-01&rft.volume=8&rft.issue=3&rft.spage=559&rft.epage=575&rft.pages=559-575&rft.issn=2198-5804&rft.eissn=2198-5812&rft_id=info:doi/10.1007/s40745-020-00243-7&rft_dat=%3Cproquest_cross%3E2555230634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555230634&rft_id=info:pmid/&rfr_iscdi=true |