Semantic Enrichment of a Multilingual Archive with Linked Open Data
This paper introduces MERCKX, a Multilingual Entity/Resource Combiner & Knowledge eXtractor. A case study involving the semantic enrichment of a multilingual archive is presented with the aim of assessing the relevance of natural language processing techniques such as named-entity recognition an...
Gespeichert in:
Veröffentlicht in: | Digital humanities quarterly 2017-01, Vol.11 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces MERCKX, a Multilingual Entity/Resource Combiner & Knowledge eXtractor. A case study involving the semantic enrichment of a multilingual archive is presented with the aim of assessing the relevance of natural language processing techniques such as named-entity recognition and entity linking for cultural heritage material. In order to improve the indexing of historical collections, we map entities to the Linked Open Data cloud using a language-independent method. Our evaluation shows that MERCKX outperforms similar tools on the task of place disambiguation and linking, achieving over 80% precision despite lower recall scores. These results are encouraging for small and medium-size cultural institutions since they demonstrate that semantic enrichment can be achieved with limited resources. |
---|---|
ISSN: | 1938-4122 |