A sustainable exergy model for energy–water nexus in the hot regions: integrated combined heat, power and water desalination systems

Water scarcity is a worldwide concern for Earth citizens. Finding new methods for water concentration is essential for the extension of life. The water issue is more intense in the regions with a warm to the tropical environment. Considering the cooling demand of these regions, which consequently re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2021-08, Vol.145 (3), p.709-726
Hauptverfasser: Ansari, Mehran, Beitollahi, Armin, Ahmadi, Pouria, Rezaie, Behnaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 3
container_start_page 709
container_title Journal of thermal analysis and calorimetry
container_volume 145
creator Ansari, Mehran
Beitollahi, Armin
Ahmadi, Pouria
Rezaie, Behnaz
description Water scarcity is a worldwide concern for Earth citizens. Finding new methods for water concentration is essential for the extension of life. The water issue is more intense in the regions with a warm to the tropical environment. Considering the cooling demand of these regions, which consequently requires excess energy to satisfy the cooling load, having a thermal system to support three concerns of the water, cooling, and power would be the key for the warm/hot weather areas. In the present study, a novel model by integration of gas turbine power cycle with a solar parabolic collector, a steam turbine, heat recovery, steam generator, multi-effect desalination, and absorption chiller is proposed. The suggested model is optimized through developing a comprehensive multi-objective function to maximize the exergy efficiency and minimize the cost. Using the genetic algorithm method, the model is optimized based on six design parameters such as condenser pressure, number of solar parabolic through collector rows, gas turbine and steam turbine inlet temperature, high and low pressure, high- and low-pressure pinch points. The final optimal design point of this cycle enables the overall exergy efficiency of 36.16 % and 188.43 $ h - 1 of the total cost rate value; also, this integrated energy system provides the net electrical generation of 5.18 MW and the cooling load rate of 406.18 KW and generates 2.57 kg s - 1 of desalinated water. In this novel cycle solar energy is used for preheating the inflow of the combustion chamber. A dual pressure heat recovery exploits thermal energy of flue gas, which runs both desalination and multi-effect absorption system and circulates in simultaneous water and cooling load generation. Finally, by utilizing the genetic 1 algorithm, the optimal system is developed.
doi_str_mv 10.1007/s10973-020-09977-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2555127019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A669665577</galeid><sourcerecordid>A669665577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ccc0f642a9badda39fb4dc282d9462d5b376beacabce08ba6844f0aab4367ef83</originalsourceid><addsrcrecordid>eNp9kU2L1TAUhosoOI7-AVcBV4Idk7RNGneXwY-BAcGPdThNTno7tMk1SZl7d678A_5Df4kZK8hsXOXl8DznBN6qes7oBaNUvk6MKtnUlNOaKiVlzR5UZ6zr-5orLh6W3JQsWEcfV09SuqG0YJSdVT92JK0pw-RhmJHgEeN4IkuwOBMXIkF_N_j1_ectZIzE43FNZPIk75HsQyYRxyn49KbMMo6xQJaYsAyTL2GPkF-RQ7gtJnhLth0WE8zlXi4iSaeUcUlPq0cO5oTP_r7n1dd3b79cfqivP76_utxd16ZRPNfGGOpEy0ENYC00yg2tNbznVrWC225opBgQDAwGaT-A6NvWUYChbYRE1zfn1Ytt7yGGbyumrG_CGn05qXnXdYxLylShLjZqhBn15F3IsSw1YHGZTPDopjLfCaGE6Dopi_DynlCYjMc8wpqSvvr86T7LN9bEkFJEpw9xWiCeNKP6rky9lalLmfpPmZoVqdmkVGA_Yvz37_9YvwG3EaXX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555127019</pqid></control><display><type>article</type><title>A sustainable exergy model for energy–water nexus in the hot regions: integrated combined heat, power and water desalination systems</title><source>SpringerLink Journals</source><creator>Ansari, Mehran ; Beitollahi, Armin ; Ahmadi, Pouria ; Rezaie, Behnaz</creator><creatorcontrib>Ansari, Mehran ; Beitollahi, Armin ; Ahmadi, Pouria ; Rezaie, Behnaz</creatorcontrib><description>Water scarcity is a worldwide concern for Earth citizens. Finding new methods for water concentration is essential for the extension of life. The water issue is more intense in the regions with a warm to the tropical environment. Considering the cooling demand of these regions, which consequently requires excess energy to satisfy the cooling load, having a thermal system to support three concerns of the water, cooling, and power would be the key for the warm/hot weather areas. In the present study, a novel model by integration of gas turbine power cycle with a solar parabolic collector, a steam turbine, heat recovery, steam generator, multi-effect desalination, and absorption chiller is proposed. The suggested model is optimized through developing a comprehensive multi-objective function to maximize the exergy efficiency and minimize the cost. Using the genetic algorithm method, the model is optimized based on six design parameters such as condenser pressure, number of solar parabolic through collector rows, gas turbine and steam turbine inlet temperature, high and low pressure, high- and low-pressure pinch points. The final optimal design point of this cycle enables the overall exergy efficiency of 36.16 % and 188.43 $ h - 1 of the total cost rate value; also, this integrated energy system provides the net electrical generation of 5.18 MW and the cooling load rate of 406.18 KW and generates 2.57 kg s - 1 of desalinated water. In this novel cycle solar energy is used for preheating the inflow of the combustion chamber. A dual pressure heat recovery exploits thermal energy of flue gas, which runs both desalination and multi-effect absorption system and circulates in simultaneous water and cooling load generation. Finally, by utilizing the genetic 1 algorithm, the optimal system is developed.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-09977-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Absorption ; Analysis ; Analytical Chemistry ; Aquatic resources ; Boilers ; Capacitors ; Chemistry ; Chemistry and Materials Science ; Combustion ; Combustion chambers ; Cooling loads ; Cooling rate ; Desalination ; Design optimization ; Design parameters ; Energy recovery ; Exergy ; Flue gas ; Force and energy ; Gas turbines ; Genetic algorithms ; Heat recovery ; Heat recovery systems ; Heating ; Hot weather ; Inlet temperature ; Inorganic Chemistry ; Integrated energy systems ; Low pressure ; Measurement Science and Instrumentation ; Physical Chemistry ; Polymer Sciences ; Saline water conversion ; Solar energy ; Steam turbines ; Thermal energy ; Tropical environments ; Turbines</subject><ispartof>Journal of thermal analysis and calorimetry, 2021-08, Vol.145 (3), p.709-726</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ccc0f642a9badda39fb4dc282d9462d5b376beacabce08ba6844f0aab4367ef83</citedby><cites>FETCH-LOGICAL-c392t-ccc0f642a9badda39fb4dc282d9462d5b376beacabce08ba6844f0aab4367ef83</cites><orcidid>0000-0003-2708-6126 ; 0000-0001-8829-133X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-09977-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-09977-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ansari, Mehran</creatorcontrib><creatorcontrib>Beitollahi, Armin</creatorcontrib><creatorcontrib>Ahmadi, Pouria</creatorcontrib><creatorcontrib>Rezaie, Behnaz</creatorcontrib><title>A sustainable exergy model for energy–water nexus in the hot regions: integrated combined heat, power and water desalination systems</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Water scarcity is a worldwide concern for Earth citizens. Finding new methods for water concentration is essential for the extension of life. The water issue is more intense in the regions with a warm to the tropical environment. Considering the cooling demand of these regions, which consequently requires excess energy to satisfy the cooling load, having a thermal system to support three concerns of the water, cooling, and power would be the key for the warm/hot weather areas. In the present study, a novel model by integration of gas turbine power cycle with a solar parabolic collector, a steam turbine, heat recovery, steam generator, multi-effect desalination, and absorption chiller is proposed. The suggested model is optimized through developing a comprehensive multi-objective function to maximize the exergy efficiency and minimize the cost. Using the genetic algorithm method, the model is optimized based on six design parameters such as condenser pressure, number of solar parabolic through collector rows, gas turbine and steam turbine inlet temperature, high and low pressure, high- and low-pressure pinch points. The final optimal design point of this cycle enables the overall exergy efficiency of 36.16 % and 188.43 $ h - 1 of the total cost rate value; also, this integrated energy system provides the net electrical generation of 5.18 MW and the cooling load rate of 406.18 KW and generates 2.57 kg s - 1 of desalinated water. In this novel cycle solar energy is used for preheating the inflow of the combustion chamber. A dual pressure heat recovery exploits thermal energy of flue gas, which runs both desalination and multi-effect absorption system and circulates in simultaneous water and cooling load generation. Finally, by utilizing the genetic 1 algorithm, the optimal system is developed.</description><subject>Absorption</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Aquatic resources</subject><subject>Boilers</subject><subject>Capacitors</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combustion</subject><subject>Combustion chambers</subject><subject>Cooling loads</subject><subject>Cooling rate</subject><subject>Desalination</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Energy recovery</subject><subject>Exergy</subject><subject>Flue gas</subject><subject>Force and energy</subject><subject>Gas turbines</subject><subject>Genetic algorithms</subject><subject>Heat recovery</subject><subject>Heat recovery systems</subject><subject>Heating</subject><subject>Hot weather</subject><subject>Inlet temperature</subject><subject>Inorganic Chemistry</subject><subject>Integrated energy systems</subject><subject>Low pressure</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Saline water conversion</subject><subject>Solar energy</subject><subject>Steam turbines</subject><subject>Thermal energy</subject><subject>Tropical environments</subject><subject>Turbines</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU2L1TAUhosoOI7-AVcBV4Idk7RNGneXwY-BAcGPdThNTno7tMk1SZl7d678A_5Df4kZK8hsXOXl8DznBN6qes7oBaNUvk6MKtnUlNOaKiVlzR5UZ6zr-5orLh6W3JQsWEcfV09SuqG0YJSdVT92JK0pw-RhmJHgEeN4IkuwOBMXIkF_N_j1_ectZIzE43FNZPIk75HsQyYRxyn49KbMMo6xQJaYsAyTL2GPkF-RQ7gtJnhLth0WE8zlXi4iSaeUcUlPq0cO5oTP_r7n1dd3b79cfqivP76_utxd16ZRPNfGGOpEy0ENYC00yg2tNbznVrWC225opBgQDAwGaT-A6NvWUYChbYRE1zfn1Ytt7yGGbyumrG_CGn05qXnXdYxLylShLjZqhBn15F3IsSw1YHGZTPDopjLfCaGE6Dopi_DynlCYjMc8wpqSvvr86T7LN9bEkFJEpw9xWiCeNKP6rky9lalLmfpPmZoVqdmkVGA_Yvz37_9YvwG3EaXX</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ansari, Mehran</creator><creator>Beitollahi, Armin</creator><creator>Ahmadi, Pouria</creator><creator>Rezaie, Behnaz</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0003-2708-6126</orcidid><orcidid>https://orcid.org/0000-0001-8829-133X</orcidid></search><sort><creationdate>20210801</creationdate><title>A sustainable exergy model for energy–water nexus in the hot regions: integrated combined heat, power and water desalination systems</title><author>Ansari, Mehran ; Beitollahi, Armin ; Ahmadi, Pouria ; Rezaie, Behnaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ccc0f642a9badda39fb4dc282d9462d5b376beacabce08ba6844f0aab4367ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Aquatic resources</topic><topic>Boilers</topic><topic>Capacitors</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combustion</topic><topic>Combustion chambers</topic><topic>Cooling loads</topic><topic>Cooling rate</topic><topic>Desalination</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Energy recovery</topic><topic>Exergy</topic><topic>Flue gas</topic><topic>Force and energy</topic><topic>Gas turbines</topic><topic>Genetic algorithms</topic><topic>Heat recovery</topic><topic>Heat recovery systems</topic><topic>Heating</topic><topic>Hot weather</topic><topic>Inlet temperature</topic><topic>Inorganic Chemistry</topic><topic>Integrated energy systems</topic><topic>Low pressure</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Saline water conversion</topic><topic>Solar energy</topic><topic>Steam turbines</topic><topic>Thermal energy</topic><topic>Tropical environments</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansari, Mehran</creatorcontrib><creatorcontrib>Beitollahi, Armin</creatorcontrib><creatorcontrib>Ahmadi, Pouria</creatorcontrib><creatorcontrib>Rezaie, Behnaz</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansari, Mehran</au><au>Beitollahi, Armin</au><au>Ahmadi, Pouria</au><au>Rezaie, Behnaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sustainable exergy model for energy–water nexus in the hot regions: integrated combined heat, power and water desalination systems</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>145</volume><issue>3</issue><spage>709</spage><epage>726</epage><pages>709-726</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Water scarcity is a worldwide concern for Earth citizens. Finding new methods for water concentration is essential for the extension of life. The water issue is more intense in the regions with a warm to the tropical environment. Considering the cooling demand of these regions, which consequently requires excess energy to satisfy the cooling load, having a thermal system to support three concerns of the water, cooling, and power would be the key for the warm/hot weather areas. In the present study, a novel model by integration of gas turbine power cycle with a solar parabolic collector, a steam turbine, heat recovery, steam generator, multi-effect desalination, and absorption chiller is proposed. The suggested model is optimized through developing a comprehensive multi-objective function to maximize the exergy efficiency and minimize the cost. Using the genetic algorithm method, the model is optimized based on six design parameters such as condenser pressure, number of solar parabolic through collector rows, gas turbine and steam turbine inlet temperature, high and low pressure, high- and low-pressure pinch points. The final optimal design point of this cycle enables the overall exergy efficiency of 36.16 % and 188.43 $ h - 1 of the total cost rate value; also, this integrated energy system provides the net electrical generation of 5.18 MW and the cooling load rate of 406.18 KW and generates 2.57 kg s - 1 of desalinated water. In this novel cycle solar energy is used for preheating the inflow of the combustion chamber. A dual pressure heat recovery exploits thermal energy of flue gas, which runs both desalination and multi-effect absorption system and circulates in simultaneous water and cooling load generation. Finally, by utilizing the genetic 1 algorithm, the optimal system is developed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-09977-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2708-6126</orcidid><orcidid>https://orcid.org/0000-0001-8829-133X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2021-08, Vol.145 (3), p.709-726
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2555127019
source SpringerLink Journals
subjects Absorption
Analysis
Analytical Chemistry
Aquatic resources
Boilers
Capacitors
Chemistry
Chemistry and Materials Science
Combustion
Combustion chambers
Cooling loads
Cooling rate
Desalination
Design optimization
Design parameters
Energy recovery
Exergy
Flue gas
Force and energy
Gas turbines
Genetic algorithms
Heat recovery
Heat recovery systems
Heating
Hot weather
Inlet temperature
Inorganic Chemistry
Integrated energy systems
Low pressure
Measurement Science and Instrumentation
Physical Chemistry
Polymer Sciences
Saline water conversion
Solar energy
Steam turbines
Thermal energy
Tropical environments
Turbines
title A sustainable exergy model for energy–water nexus in the hot regions: integrated combined heat, power and water desalination systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sustainable%20exergy%20model%20for%20energy%E2%80%93water%20nexus%20in%20the%20hot%20regions:%20integrated%20combined%20heat,%20power%20and%20water%20desalination%20systems&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Ansari,%20Mehran&rft.date=2021-08-01&rft.volume=145&rft.issue=3&rft.spage=709&rft.epage=726&rft.pages=709-726&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-09977-1&rft_dat=%3Cgale_proqu%3EA669665577%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555127019&rft_id=info:pmid/&rft_galeid=A669665577&rfr_iscdi=true