A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents

A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2021-07, Vol.2021, p.1-12
Hauptverfasser: Yu, Dian, Wang, Tongyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title Scientific programming
container_volume 2021
creator Yu, Dian
Wang, Tongyao
description A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing the others in each iteration. The convergence rate is obtained using an alternative gap benchmark of objective value. Numerical simulations suggest that the algorithm will converge to a random point on the Pareto front.
doi_str_mv 10.1155/2021/9939805
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554894996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554894996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2bbf8856bdeaecd5f5f5e784bf404a270f3a5cf4d90b1bfc61e4d1325a77c3ae3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFZv_oCAR11Nskl3cyz1ExYUq-BtSbKTNiXd1GSX0n9vSnuWOcwcnnlneLLsmuB7Qjh_oJiSByEKUWF-ko1IVfJcEPFzmmbMq1xQxs6zixhXGJOKYDzK7BQ92tgHq4YeWjR1Cx9sv1wj4wOqZVhAPtfSAaptBzK4HZr5YeMS-gnRD0FD2nFey976Dn0ErxysI9qmDDQHZ2xcoukCuj5eZmdGughXxz7Ovp-fvmavef3-8jab1rmmgvU5VcpUFZ-oFiTolptUUFZMGYaZpCU2heTasFZgRZTREwKsJQXlsix1IaEYZzeH3E3wvwPEvlmlP7t0sqGcs0owISaJujtQOvgYA5hmE-xahl1DcLOX2exlNkeZCb894EvbtXJr_6f_AHoNdX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554894996</pqid></control><display><type>article</type><title>A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Yu, Dian ; Wang, Tongyao</creator><contributor>Qu, Xiaobo ; Xiaobo Qu</contributor><creatorcontrib>Yu, Dian ; Wang, Tongyao ; Qu, Xiaobo ; Xiaobo Qu</creatorcontrib><description>A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing the others in each iteration. The convergence rate is obtained using an alternative gap benchmark of objective value. Numerical simulations suggest that the algorithm will converge to a random point on the Pareto front.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2021/9939805</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Bandwidths ; Convergence ; Coupling ; Internet service providers ; Iterative methods ; Optimization ; Optimization techniques ; Quotas ; Resource allocation</subject><ispartof>Scientific programming, 2021-07, Vol.2021, p.1-12</ispartof><rights>Copyright © 2021 Dian Yu and Tongyao Wang.</rights><rights>Copyright © 2021 Dian Yu and Tongyao Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-2bbf8856bdeaecd5f5f5e784bf404a270f3a5cf4d90b1bfc61e4d1325a77c3ae3</cites><orcidid>0000-0001-7796-8368 ; 0000-0001-8306-7494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Qu, Xiaobo</contributor><contributor>Xiaobo Qu</contributor><creatorcontrib>Yu, Dian</creatorcontrib><creatorcontrib>Wang, Tongyao</creatorcontrib><title>A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents</title><title>Scientific programming</title><description>A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing the others in each iteration. The convergence rate is obtained using an alternative gap benchmark of objective value. Numerical simulations suggest that the algorithm will converge to a random point on the Pareto front.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Convergence</subject><subject>Coupling</subject><subject>Internet service providers</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Quotas</subject><subject>Resource allocation</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1LAzEQhhdRsFZv_oCAR11Nskl3cyz1ExYUq-BtSbKTNiXd1GSX0n9vSnuWOcwcnnlneLLsmuB7Qjh_oJiSByEKUWF-ko1IVfJcEPFzmmbMq1xQxs6zixhXGJOKYDzK7BQ92tgHq4YeWjR1Cx9sv1wj4wOqZVhAPtfSAaptBzK4HZr5YeMS-gnRD0FD2nFey976Dn0ErxysI9qmDDQHZ2xcoukCuj5eZmdGughXxz7Ovp-fvmavef3-8jab1rmmgvU5VcpUFZ-oFiTolptUUFZMGYaZpCU2heTasFZgRZTREwKsJQXlsix1IaEYZzeH3E3wvwPEvlmlP7t0sqGcs0owISaJujtQOvgYA5hmE-xahl1DcLOX2exlNkeZCb894EvbtXJr_6f_AHoNdX4</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Yu, Dian</creator><creator>Wang, Tongyao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7796-8368</orcidid><orcidid>https://orcid.org/0000-0001-8306-7494</orcidid></search><sort><creationdate>20210715</creationdate><title>A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents</title><author>Yu, Dian ; Wang, Tongyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2bbf8856bdeaecd5f5f5e784bf404a270f3a5cf4d90b1bfc61e4d1325a77c3ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Convergence</topic><topic>Coupling</topic><topic>Internet service providers</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Quotas</topic><topic>Resource allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Dian</creatorcontrib><creatorcontrib>Wang, Tongyao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Dian</au><au>Wang, Tongyao</au><au>Qu, Xiaobo</au><au>Xiaobo Qu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents</atitle><jtitle>Scientific programming</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing the others in each iteration. The convergence rate is obtained using an alternative gap benchmark of objective value. Numerical simulations suggest that the algorithm will converge to a random point on the Pareto front.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9939805</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7796-8368</orcidid><orcidid>https://orcid.org/0000-0001-8306-7494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2021-07, Vol.2021, p.1-12
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2554894996
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Algorithms
Bandwidths
Convergence
Coupling
Internet service providers
Iterative methods
Optimization
Optimization techniques
Quotas
Resource allocation
title A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Distributed%20Algorithm%20for%20Large-Scale%20Linearly%20Coupled%20Resource%20Allocation%20Problems%20with%20Selfish%20Agents&rft.jtitle=Scientific%20programming&rft.au=Yu,%20Dian&rft.date=2021-07-15&rft.volume=2021&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2021/9939805&rft_dat=%3Cproquest_cross%3E2554894996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554894996&rft_id=info:pmid/&rfr_iscdi=true