A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents
A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing th...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2021-07, Vol.2021, p.1-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2021 |
creator | Yu, Dian Wang, Tongyao |
description | A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing the others in each iteration. The convergence rate is obtained using an alternative gap benchmark of objective value. Numerical simulations suggest that the algorithm will converge to a random point on the Pareto front. |
doi_str_mv | 10.1155/2021/9939805 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554894996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554894996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2bbf8856bdeaecd5f5f5e784bf404a270f3a5cf4d90b1bfc61e4d1325a77c3ae3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFZv_oCAR11Nskl3cyz1ExYUq-BtSbKTNiXd1GSX0n9vSnuWOcwcnnlneLLsmuB7Qjh_oJiSByEKUWF-ko1IVfJcEPFzmmbMq1xQxs6zixhXGJOKYDzK7BQ92tgHq4YeWjR1Cx9sv1wj4wOqZVhAPtfSAaptBzK4HZr5YeMS-gnRD0FD2nFey976Dn0ErxysI9qmDDQHZ2xcoukCuj5eZmdGughXxz7Ovp-fvmavef3-8jab1rmmgvU5VcpUFZ-oFiTolptUUFZMGYaZpCU2heTasFZgRZTREwKsJQXlsix1IaEYZzeH3E3wvwPEvlmlP7t0sqGcs0owISaJujtQOvgYA5hmE-xahl1DcLOX2exlNkeZCb894EvbtXJr_6f_AHoNdX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554894996</pqid></control><display><type>article</type><title>A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Yu, Dian ; Wang, Tongyao</creator><contributor>Qu, Xiaobo ; Xiaobo Qu</contributor><creatorcontrib>Yu, Dian ; Wang, Tongyao ; Qu, Xiaobo ; Xiaobo Qu</creatorcontrib><description>A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing the others in each iteration. The convergence rate is obtained using an alternative gap benchmark of objective value. Numerical simulations suggest that the algorithm will converge to a random point on the Pareto front.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2021/9939805</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Bandwidths ; Convergence ; Coupling ; Internet service providers ; Iterative methods ; Optimization ; Optimization techniques ; Quotas ; Resource allocation</subject><ispartof>Scientific programming, 2021-07, Vol.2021, p.1-12</ispartof><rights>Copyright © 2021 Dian Yu and Tongyao Wang.</rights><rights>Copyright © 2021 Dian Yu and Tongyao Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-2bbf8856bdeaecd5f5f5e784bf404a270f3a5cf4d90b1bfc61e4d1325a77c3ae3</cites><orcidid>0000-0001-7796-8368 ; 0000-0001-8306-7494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Qu, Xiaobo</contributor><contributor>Xiaobo Qu</contributor><creatorcontrib>Yu, Dian</creatorcontrib><creatorcontrib>Wang, Tongyao</creatorcontrib><title>A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents</title><title>Scientific programming</title><description>A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing the others in each iteration. The convergence rate is obtained using an alternative gap benchmark of objective value. Numerical simulations suggest that the algorithm will converge to a random point on the Pareto front.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Convergence</subject><subject>Coupling</subject><subject>Internet service providers</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Quotas</subject><subject>Resource allocation</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1LAzEQhhdRsFZv_oCAR11Nskl3cyz1ExYUq-BtSbKTNiXd1GSX0n9vSnuWOcwcnnlneLLsmuB7Qjh_oJiSByEKUWF-ko1IVfJcEPFzmmbMq1xQxs6zixhXGJOKYDzK7BQ92tgHq4YeWjR1Cx9sv1wj4wOqZVhAPtfSAaptBzK4HZr5YeMS-gnRD0FD2nFey976Dn0ErxysI9qmDDQHZ2xcoukCuj5eZmdGughXxz7Ovp-fvmavef3-8jab1rmmgvU5VcpUFZ-oFiTolptUUFZMGYaZpCU2heTasFZgRZTREwKsJQXlsix1IaEYZzeH3E3wvwPEvlmlP7t0sqGcs0owISaJujtQOvgYA5hmE-xahl1DcLOX2exlNkeZCb894EvbtXJr_6f_AHoNdX4</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Yu, Dian</creator><creator>Wang, Tongyao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7796-8368</orcidid><orcidid>https://orcid.org/0000-0001-8306-7494</orcidid></search><sort><creationdate>20210715</creationdate><title>A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents</title><author>Yu, Dian ; Wang, Tongyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2bbf8856bdeaecd5f5f5e784bf404a270f3a5cf4d90b1bfc61e4d1325a77c3ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Convergence</topic><topic>Coupling</topic><topic>Internet service providers</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Quotas</topic><topic>Resource allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Dian</creatorcontrib><creatorcontrib>Wang, Tongyao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Dian</au><au>Wang, Tongyao</au><au>Qu, Xiaobo</au><au>Xiaobo Qu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents</atitle><jtitle>Scientific programming</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource optimization problem with selfish agent. This method has a cheap computational cost and can guarantee an improvement of selected objective function without jeopardizing the others in each iteration. The convergence rate is obtained using an alternative gap benchmark of objective value. Numerical simulations suggest that the algorithm will converge to a random point on the Pareto front.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9939805</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7796-8368</orcidid><orcidid>https://orcid.org/0000-0001-8306-7494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2021-07, Vol.2021, p.1-12 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2554894996 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Algorithms Bandwidths Convergence Coupling Internet service providers Iterative methods Optimization Optimization techniques Quotas Resource allocation |
title | A Distributed Algorithm for Large-Scale Linearly Coupled Resource Allocation Problems with Selfish Agents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Distributed%20Algorithm%20for%20Large-Scale%20Linearly%20Coupled%20Resource%20Allocation%20Problems%20with%20Selfish%20Agents&rft.jtitle=Scientific%20programming&rft.au=Yu,%20Dian&rft.date=2021-07-15&rft.volume=2021&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2021/9939805&rft_dat=%3Cproquest_cross%3E2554894996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554894996&rft_id=info:pmid/&rfr_iscdi=true |