Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I

Biomass gasification for energy purposes has several advantages, such as the mitigation of global warming and national energy independency. In the present work, the data from an innovative and intensified steam/oxygen biomass gasification process, integrating a gas filtration step directly inside th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-07, Vol.9 (7), p.1104
Hauptverfasser: Barisano, Donatella, Canneto, Giuseppe, Nanna, Francesco, Villone, Antonio, Fanelli, Emanuele, Freda, Cesare, Grieco, Massimiliano, Cornacchia, Giacinto, Braccio, Giacobbe, Marcantonio, Vera, Bocci, Enrico, Foscolo, Pier Ugo, Heidenreich, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1104
container_title Processes
container_volume 9
creator Barisano, Donatella
Canneto, Giuseppe
Nanna, Francesco
Villone, Antonio
Fanelli, Emanuele
Freda, Cesare
Grieco, Massimiliano
Cornacchia, Giacinto
Braccio, Giacobbe
Marcantonio, Vera
Bocci, Enrico
Foscolo, Pier Ugo
Heidenreich, Steffen
description Biomass gasification for energy purposes has several advantages, such as the mitigation of global warming and national energy independency. In the present work, the data from an innovative and intensified steam/oxygen biomass gasification process, integrating a gas filtration step directly inside the reactor, are presented. The produced gas at the outlet of the 1 MWth gasification pilot plant was analysed in terms of its main gaseous products (hydrogen, carbon monoxide, carbon dioxide, and methane) and contaminants. Experimental test sets were carried out at 0.25–0.28 Equivalence Ratio (ER), 0.4–0.5 Steam/Biomass (S/B), and 780–850 °C gasification temperature. Almond shells were selected as biomass feedstock and supplied to the reactor at approximately 120 and 150 kgdry/h. Based on the collected data, the in-vessel filtration system showed a dust removal efficiency higher than 99%-wt. A gas yield of 1.2 Nm3dry/kgdaf and a producer gas with a dry composition of 27–33%v H2, 23–29%v CO, 31–36%v CO2, 9–11%v CH4, and light hydrocarbons lower than 1%v were also observed. Correspondingly, a Low Heating Value (LHV) of 10.3–10.9 MJ/Nm3dry and a cold gas efficiency (CGE) up to 75% were estimated. Overall, the collected data allowed for the assessment of the preliminary performances of the intensified gasification process and provided the data to validate a simulative model developed through Aspen Plus software.
doi_str_mv 10.3390/pr9071104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554723935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554723935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-765e83a749a9c5ab2490267b5c54df9f530dd9883df12f4a21f6188b9b77089a3</originalsourceid><addsrcrecordid>eNpNUM1KAzEYDKJgqT34BgFPHlbzs2k23rTUdqFgwfa8ZLNJu6WbrMlW7M130Cf0SUytiN_l-wbmm2EGgEuMbigV6Lb1AnGMUXoCeoQQngiO-em_-xwMQtigOALTjA174CO3rzp09Up2tbPQGSgtzG2nbahNrSu4WGvfuGS01k2t5BaO31rt60bbLoJn3SXLFhrn4XRfebfSFs69q3bqR81418CH2jUyhDs4kQdJdTSKLKVDgHPt43cjrdJf759z6TuYX4AzI7dBD353Hywfx4vRNJk9TfLR_SxRMVCX8CHTGZU8FVIoJkuSCkSGvGSKpZURhlFUVSLLaGUwMakk2AxxlpWi5BxlQtI-uDrqtt697GILxcbtvI2WBWEs5YQKyiLr-shS3oXgtSnamF_6fYFRcai9-KudfgMLv3dr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554723935</pqid></control><display><type>article</type><title>Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Barisano, Donatella ; Canneto, Giuseppe ; Nanna, Francesco ; Villone, Antonio ; Fanelli, Emanuele ; Freda, Cesare ; Grieco, Massimiliano ; Cornacchia, Giacinto ; Braccio, Giacobbe ; Marcantonio, Vera ; Bocci, Enrico ; Foscolo, Pier Ugo ; Heidenreich, Steffen</creator><creatorcontrib>Barisano, Donatella ; Canneto, Giuseppe ; Nanna, Francesco ; Villone, Antonio ; Fanelli, Emanuele ; Freda, Cesare ; Grieco, Massimiliano ; Cornacchia, Giacinto ; Braccio, Giacobbe ; Marcantonio, Vera ; Bocci, Enrico ; Foscolo, Pier Ugo ; Heidenreich, Steffen</creatorcontrib><description>Biomass gasification for energy purposes has several advantages, such as the mitigation of global warming and national energy independency. In the present work, the data from an innovative and intensified steam/oxygen biomass gasification process, integrating a gas filtration step directly inside the reactor, are presented. The produced gas at the outlet of the 1 MWth gasification pilot plant was analysed in terms of its main gaseous products (hydrogen, carbon monoxide, carbon dioxide, and methane) and contaminants. Experimental test sets were carried out at 0.25–0.28 Equivalence Ratio (ER), 0.4–0.5 Steam/Biomass (S/B), and 780–850 °C gasification temperature. Almond shells were selected as biomass feedstock and supplied to the reactor at approximately 120 and 150 kgdry/h. Based on the collected data, the in-vessel filtration system showed a dust removal efficiency higher than 99%-wt. A gas yield of 1.2 Nm3dry/kgdaf and a producer gas with a dry composition of 27–33%v H2, 23–29%v CO, 31–36%v CO2, 9–11%v CH4, and light hydrocarbons lower than 1%v were also observed. Correspondingly, a Low Heating Value (LHV) of 10.3–10.9 MJ/Nm3dry and a cold gas efficiency (CGE) up to 75% were estimated. Overall, the collected data allowed for the assessment of the preliminary performances of the intensified gasification process and provided the data to validate a simulative model developed through Aspen Plus software.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9071104</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Biomass ; Biomass energy production ; Calorific value ; Carbon ; Carbon dioxide ; Carbon monoxide ; Catalytic cracking ; Climate change ; Cold gas ; Contaminants ; Data collection ; Design ; Equivalence ratio ; Filtration ; Fluidized bed reactors ; Gases ; Gasification ; Global warming ; High temperature ; Hydrocarbons ; Hydrogen ; Hydrogen production ; Methane ; Producer gas ; Steam ; Synthesis gas</subject><ispartof>Processes, 2021-07, Vol.9 (7), p.1104</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-765e83a749a9c5ab2490267b5c54df9f530dd9883df12f4a21f6188b9b77089a3</citedby><cites>FETCH-LOGICAL-c222t-765e83a749a9c5ab2490267b5c54df9f530dd9883df12f4a21f6188b9b77089a3</cites><orcidid>0000-0002-1603-2125 ; 0000-0002-8048-1937 ; 0000-0003-3115-0098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barisano, Donatella</creatorcontrib><creatorcontrib>Canneto, Giuseppe</creatorcontrib><creatorcontrib>Nanna, Francesco</creatorcontrib><creatorcontrib>Villone, Antonio</creatorcontrib><creatorcontrib>Fanelli, Emanuele</creatorcontrib><creatorcontrib>Freda, Cesare</creatorcontrib><creatorcontrib>Grieco, Massimiliano</creatorcontrib><creatorcontrib>Cornacchia, Giacinto</creatorcontrib><creatorcontrib>Braccio, Giacobbe</creatorcontrib><creatorcontrib>Marcantonio, Vera</creatorcontrib><creatorcontrib>Bocci, Enrico</creatorcontrib><creatorcontrib>Foscolo, Pier Ugo</creatorcontrib><creatorcontrib>Heidenreich, Steffen</creatorcontrib><title>Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I</title><title>Processes</title><description>Biomass gasification for energy purposes has several advantages, such as the mitigation of global warming and national energy independency. In the present work, the data from an innovative and intensified steam/oxygen biomass gasification process, integrating a gas filtration step directly inside the reactor, are presented. The produced gas at the outlet of the 1 MWth gasification pilot plant was analysed in terms of its main gaseous products (hydrogen, carbon monoxide, carbon dioxide, and methane) and contaminants. Experimental test sets were carried out at 0.25–0.28 Equivalence Ratio (ER), 0.4–0.5 Steam/Biomass (S/B), and 780–850 °C gasification temperature. Almond shells were selected as biomass feedstock and supplied to the reactor at approximately 120 and 150 kgdry/h. Based on the collected data, the in-vessel filtration system showed a dust removal efficiency higher than 99%-wt. A gas yield of 1.2 Nm3dry/kgdaf and a producer gas with a dry composition of 27–33%v H2, 23–29%v CO, 31–36%v CO2, 9–11%v CH4, and light hydrocarbons lower than 1%v were also observed. Correspondingly, a Low Heating Value (LHV) of 10.3–10.9 MJ/Nm3dry and a cold gas efficiency (CGE) up to 75% were estimated. Overall, the collected data allowed for the assessment of the preliminary performances of the intensified gasification process and provided the data to validate a simulative model developed through Aspen Plus software.</description><subject>Alternative energy sources</subject><subject>Biomass</subject><subject>Biomass energy production</subject><subject>Calorific value</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalytic cracking</subject><subject>Climate change</subject><subject>Cold gas</subject><subject>Contaminants</subject><subject>Data collection</subject><subject>Design</subject><subject>Equivalence ratio</subject><subject>Filtration</subject><subject>Fluidized bed reactors</subject><subject>Gases</subject><subject>Gasification</subject><subject>Global warming</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Methane</subject><subject>Producer gas</subject><subject>Steam</subject><subject>Synthesis gas</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUM1KAzEYDKJgqT34BgFPHlbzs2k23rTUdqFgwfa8ZLNJu6WbrMlW7M130Cf0SUytiN_l-wbmm2EGgEuMbigV6Lb1AnGMUXoCeoQQngiO-em_-xwMQtigOALTjA174CO3rzp09Up2tbPQGSgtzG2nbahNrSu4WGvfuGS01k2t5BaO31rt60bbLoJn3SXLFhrn4XRfebfSFs69q3bqR81418CH2jUyhDs4kQdJdTSKLKVDgHPt43cjrdJf759z6TuYX4AzI7dBD353Hywfx4vRNJk9TfLR_SxRMVCX8CHTGZU8FVIoJkuSCkSGvGSKpZURhlFUVSLLaGUwMakk2AxxlpWi5BxlQtI-uDrqtt697GILxcbtvI2WBWEs5YQKyiLr-shS3oXgtSnamF_6fYFRcai9-KudfgMLv3dr</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Barisano, Donatella</creator><creator>Canneto, Giuseppe</creator><creator>Nanna, Francesco</creator><creator>Villone, Antonio</creator><creator>Fanelli, Emanuele</creator><creator>Freda, Cesare</creator><creator>Grieco, Massimiliano</creator><creator>Cornacchia, Giacinto</creator><creator>Braccio, Giacobbe</creator><creator>Marcantonio, Vera</creator><creator>Bocci, Enrico</creator><creator>Foscolo, Pier Ugo</creator><creator>Heidenreich, Steffen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1603-2125</orcidid><orcidid>https://orcid.org/0000-0002-8048-1937</orcidid><orcidid>https://orcid.org/0000-0003-3115-0098</orcidid></search><sort><creationdate>20210701</creationdate><title>Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I</title><author>Barisano, Donatella ; Canneto, Giuseppe ; Nanna, Francesco ; Villone, Antonio ; Fanelli, Emanuele ; Freda, Cesare ; Grieco, Massimiliano ; Cornacchia, Giacinto ; Braccio, Giacobbe ; Marcantonio, Vera ; Bocci, Enrico ; Foscolo, Pier Ugo ; Heidenreich, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-765e83a749a9c5ab2490267b5c54df9f530dd9883df12f4a21f6188b9b77089a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative energy sources</topic><topic>Biomass</topic><topic>Biomass energy production</topic><topic>Calorific value</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalytic cracking</topic><topic>Climate change</topic><topic>Cold gas</topic><topic>Contaminants</topic><topic>Data collection</topic><topic>Design</topic><topic>Equivalence ratio</topic><topic>Filtration</topic><topic>Fluidized bed reactors</topic><topic>Gases</topic><topic>Gasification</topic><topic>Global warming</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Methane</topic><topic>Producer gas</topic><topic>Steam</topic><topic>Synthesis gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barisano, Donatella</creatorcontrib><creatorcontrib>Canneto, Giuseppe</creatorcontrib><creatorcontrib>Nanna, Francesco</creatorcontrib><creatorcontrib>Villone, Antonio</creatorcontrib><creatorcontrib>Fanelli, Emanuele</creatorcontrib><creatorcontrib>Freda, Cesare</creatorcontrib><creatorcontrib>Grieco, Massimiliano</creatorcontrib><creatorcontrib>Cornacchia, Giacinto</creatorcontrib><creatorcontrib>Braccio, Giacobbe</creatorcontrib><creatorcontrib>Marcantonio, Vera</creatorcontrib><creatorcontrib>Bocci, Enrico</creatorcontrib><creatorcontrib>Foscolo, Pier Ugo</creatorcontrib><creatorcontrib>Heidenreich, Steffen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barisano, Donatella</au><au>Canneto, Giuseppe</au><au>Nanna, Francesco</au><au>Villone, Antonio</au><au>Fanelli, Emanuele</au><au>Freda, Cesare</au><au>Grieco, Massimiliano</au><au>Cornacchia, Giacinto</au><au>Braccio, Giacobbe</au><au>Marcantonio, Vera</au><au>Bocci, Enrico</au><au>Foscolo, Pier Ugo</au><au>Heidenreich, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I</atitle><jtitle>Processes</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>9</volume><issue>7</issue><spage>1104</spage><pages>1104-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Biomass gasification for energy purposes has several advantages, such as the mitigation of global warming and national energy independency. In the present work, the data from an innovative and intensified steam/oxygen biomass gasification process, integrating a gas filtration step directly inside the reactor, are presented. The produced gas at the outlet of the 1 MWth gasification pilot plant was analysed in terms of its main gaseous products (hydrogen, carbon monoxide, carbon dioxide, and methane) and contaminants. Experimental test sets were carried out at 0.25–0.28 Equivalence Ratio (ER), 0.4–0.5 Steam/Biomass (S/B), and 780–850 °C gasification temperature. Almond shells were selected as biomass feedstock and supplied to the reactor at approximately 120 and 150 kgdry/h. Based on the collected data, the in-vessel filtration system showed a dust removal efficiency higher than 99%-wt. A gas yield of 1.2 Nm3dry/kgdaf and a producer gas with a dry composition of 27–33%v H2, 23–29%v CO, 31–36%v CO2, 9–11%v CH4, and light hydrocarbons lower than 1%v were also observed. Correspondingly, a Low Heating Value (LHV) of 10.3–10.9 MJ/Nm3dry and a cold gas efficiency (CGE) up to 75% were estimated. Overall, the collected data allowed for the assessment of the preliminary performances of the intensified gasification process and provided the data to validate a simulative model developed through Aspen Plus software.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9071104</doi><orcidid>https://orcid.org/0000-0002-1603-2125</orcidid><orcidid>https://orcid.org/0000-0002-8048-1937</orcidid><orcidid>https://orcid.org/0000-0003-3115-0098</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2021-07, Vol.9 (7), p.1104
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2554723935
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Alternative energy sources
Biomass
Biomass energy production
Calorific value
Carbon
Carbon dioxide
Carbon monoxide
Catalytic cracking
Climate change
Cold gas
Contaminants
Data collection
Design
Equivalence ratio
Filtration
Fluidized bed reactors
Gases
Gasification
Global warming
High temperature
Hydrocarbons
Hydrogen
Hydrogen production
Methane
Producer gas
Steam
Synthesis gas
title Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20an%20Intensified%20Thermo-Chemical%20Experimental%20Set-Up%20for%20Hydrogen%20Production%20from%20Biomass:%20Gasification%20Process%20Performance%E2%80%94Part%20I&rft.jtitle=Processes&rft.au=Barisano,%20Donatella&rft.date=2021-07-01&rft.volume=9&rft.issue=7&rft.spage=1104&rft.pages=1104-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9071104&rft_dat=%3Cproquest_cross%3E2554723935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554723935&rft_id=info:pmid/&rfr_iscdi=true