Activated Carbon for Pharmaceutical Removal at Point-of-Entry

Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-07, Vol.9 (7), p.1091
Hauptverfasser: Finn, Michelle, Giampietro, Gabrielle, Mazyck, David, Rodriguez, Regina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1091
container_title Processes
container_volume 9
creator Finn, Michelle
Giampietro, Gabrielle
Mazyck, David
Rodriguez, Regina
description Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.
doi_str_mv 10.3390/pr9071091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554707105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554707105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a6e4592e33813172080c81d618dd53acacc502ffdb77bfe19d4a0bdf17c18aa93</originalsourceid><addsrcrecordid>eNpNUM1Kw0AYXETBUnvwDQKePET3281mswcPJdQqFCyi5_BlfzClycbNptC3N6UizmXmMMwwQ8gt0AfOFX3sg6ISqIILMmOMyVRJkJf_9DVZDMOOTlDAC5HPyNNSx-aA0ZqkxFD7LnE-JNsvDC1qO8ZG4z55t60_TIwx2fqmi6l36aqL4XhDrhzuB7v45Tn5fF59lC_p5m39Wi43qWaKxRRzmwnFLOcFcJCMFlQXYHIojBEcNWotKHPO1FLWzoIyGdLaOJAaCkTF5-TunNsH_z3aIVY7P4ZuqqyYEJk8rRaT6_7s0sEPQ7Cu6kPTYjhWQKvTQdXfQfwHGG5XGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554707105</pqid></control><display><type>article</type><title>Activated Carbon for Pharmaceutical Removal at Point-of-Entry</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Finn, Michelle ; Giampietro, Gabrielle ; Mazyck, David ; Rodriguez, Regina</creator><creatorcontrib>Finn, Michelle ; Giampietro, Gabrielle ; Mazyck, David ; Rodriguez, Regina</creatorcontrib><description>Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9071091</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activated carbon ; Adsorption ; Chlorine ; Contaminants ; Cost control ; Drinking water ; Effluents ; Fish reproduction ; Ibuprofen ; Impact damage ; Methylene blue ; Nitrogen ; Nonsteroidal anti-inflammatory drugs ; Pharmaceuticals ; Sodium ; Wastewater treatment ; Water treatment ; Waterways</subject><ispartof>Processes, 2021-07, Vol.9 (7), p.1091</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a6e4592e33813172080c81d618dd53acacc502ffdb77bfe19d4a0bdf17c18aa93</citedby><cites>FETCH-LOGICAL-c292t-a6e4592e33813172080c81d618dd53acacc502ffdb77bfe19d4a0bdf17c18aa93</cites><orcidid>0000-0002-4555-9946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Finn, Michelle</creatorcontrib><creatorcontrib>Giampietro, Gabrielle</creatorcontrib><creatorcontrib>Mazyck, David</creatorcontrib><creatorcontrib>Rodriguez, Regina</creatorcontrib><title>Activated Carbon for Pharmaceutical Removal at Point-of-Entry</title><title>Processes</title><description>Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Chlorine</subject><subject>Contaminants</subject><subject>Cost control</subject><subject>Drinking water</subject><subject>Effluents</subject><subject>Fish reproduction</subject><subject>Ibuprofen</subject><subject>Impact damage</subject><subject>Methylene blue</subject><subject>Nitrogen</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Pharmaceuticals</subject><subject>Sodium</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><subject>Waterways</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUM1Kw0AYXETBUnvwDQKePET3281mswcPJdQqFCyi5_BlfzClycbNptC3N6UizmXmMMwwQ8gt0AfOFX3sg6ISqIILMmOMyVRJkJf_9DVZDMOOTlDAC5HPyNNSx-aA0ZqkxFD7LnE-JNsvDC1qO8ZG4z55t60_TIwx2fqmi6l36aqL4XhDrhzuB7v45Tn5fF59lC_p5m39Wi43qWaKxRRzmwnFLOcFcJCMFlQXYHIojBEcNWotKHPO1FLWzoIyGdLaOJAaCkTF5-TunNsH_z3aIVY7P4ZuqqyYEJk8rRaT6_7s0sEPQ7Cu6kPTYjhWQKvTQdXfQfwHGG5XGw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Finn, Michelle</creator><creator>Giampietro, Gabrielle</creator><creator>Mazyck, David</creator><creator>Rodriguez, Regina</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4555-9946</orcidid></search><sort><creationdate>20210701</creationdate><title>Activated Carbon for Pharmaceutical Removal at Point-of-Entry</title><author>Finn, Michelle ; Giampietro, Gabrielle ; Mazyck, David ; Rodriguez, Regina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a6e4592e33813172080c81d618dd53acacc502ffdb77bfe19d4a0bdf17c18aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Chlorine</topic><topic>Contaminants</topic><topic>Cost control</topic><topic>Drinking water</topic><topic>Effluents</topic><topic>Fish reproduction</topic><topic>Ibuprofen</topic><topic>Impact damage</topic><topic>Methylene blue</topic><topic>Nitrogen</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Pharmaceuticals</topic><topic>Sodium</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><topic>Waterways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finn, Michelle</creatorcontrib><creatorcontrib>Giampietro, Gabrielle</creatorcontrib><creatorcontrib>Mazyck, David</creatorcontrib><creatorcontrib>Rodriguez, Regina</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finn, Michelle</au><au>Giampietro, Gabrielle</au><au>Mazyck, David</au><au>Rodriguez, Regina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activated Carbon for Pharmaceutical Removal at Point-of-Entry</atitle><jtitle>Processes</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>9</volume><issue>7</issue><spage>1091</spage><pages>1091-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9071091</doi><orcidid>https://orcid.org/0000-0002-4555-9946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2021-07, Vol.9 (7), p.1091
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2554707105
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Activated carbon
Adsorption
Chlorine
Contaminants
Cost control
Drinking water
Effluents
Fish reproduction
Ibuprofen
Impact damage
Methylene blue
Nitrogen
Nonsteroidal anti-inflammatory drugs
Pharmaceuticals
Sodium
Wastewater treatment
Water treatment
Waterways
title Activated Carbon for Pharmaceutical Removal at Point-of-Entry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activated%20Carbon%20for%20Pharmaceutical%20Removal%20at%20Point-of-Entry&rft.jtitle=Processes&rft.au=Finn,%20Michelle&rft.date=2021-07-01&rft.volume=9&rft.issue=7&rft.spage=1091&rft.pages=1091-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9071091&rft_dat=%3Cproquest_cross%3E2554707105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554707105&rft_id=info:pmid/&rfr_iscdi=true