Activated Carbon for Pharmaceutical Removal at Point-of-Entry
Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ...
Gespeichert in:
Veröffentlicht in: | Processes 2021-07, Vol.9 (7), p.1091 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1091 |
container_title | Processes |
container_volume | 9 |
creator | Finn, Michelle Giampietro, Gabrielle Mazyck, David Rodriguez, Regina |
description | Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry. |
doi_str_mv | 10.3390/pr9071091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554707105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554707105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-a6e4592e33813172080c81d618dd53acacc502ffdb77bfe19d4a0bdf17c18aa93</originalsourceid><addsrcrecordid>eNpNUM1Kw0AYXETBUnvwDQKePET3281mswcPJdQqFCyi5_BlfzClycbNptC3N6UizmXmMMwwQ8gt0AfOFX3sg6ISqIILMmOMyVRJkJf_9DVZDMOOTlDAC5HPyNNSx-aA0ZqkxFD7LnE-JNsvDC1qO8ZG4z55t60_TIwx2fqmi6l36aqL4XhDrhzuB7v45Tn5fF59lC_p5m39Wi43qWaKxRRzmwnFLOcFcJCMFlQXYHIojBEcNWotKHPO1FLWzoIyGdLaOJAaCkTF5-TunNsH_z3aIVY7P4ZuqqyYEJk8rRaT6_7s0sEPQ7Cu6kPTYjhWQKvTQdXfQfwHGG5XGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554707105</pqid></control><display><type>article</type><title>Activated Carbon for Pharmaceutical Removal at Point-of-Entry</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Finn, Michelle ; Giampietro, Gabrielle ; Mazyck, David ; Rodriguez, Regina</creator><creatorcontrib>Finn, Michelle ; Giampietro, Gabrielle ; Mazyck, David ; Rodriguez, Regina</creatorcontrib><description>Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr9071091</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Activated carbon ; Adsorption ; Chlorine ; Contaminants ; Cost control ; Drinking water ; Effluents ; Fish reproduction ; Ibuprofen ; Impact damage ; Methylene blue ; Nitrogen ; Nonsteroidal anti-inflammatory drugs ; Pharmaceuticals ; Sodium ; Wastewater treatment ; Water treatment ; Waterways</subject><ispartof>Processes, 2021-07, Vol.9 (7), p.1091</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-a6e4592e33813172080c81d618dd53acacc502ffdb77bfe19d4a0bdf17c18aa93</citedby><cites>FETCH-LOGICAL-c292t-a6e4592e33813172080c81d618dd53acacc502ffdb77bfe19d4a0bdf17c18aa93</cites><orcidid>0000-0002-4555-9946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Finn, Michelle</creatorcontrib><creatorcontrib>Giampietro, Gabrielle</creatorcontrib><creatorcontrib>Mazyck, David</creatorcontrib><creatorcontrib>Rodriguez, Regina</creatorcontrib><title>Activated Carbon for Pharmaceutical Removal at Point-of-Entry</title><title>Processes</title><description>Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Chlorine</subject><subject>Contaminants</subject><subject>Cost control</subject><subject>Drinking water</subject><subject>Effluents</subject><subject>Fish reproduction</subject><subject>Ibuprofen</subject><subject>Impact damage</subject><subject>Methylene blue</subject><subject>Nitrogen</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Pharmaceuticals</subject><subject>Sodium</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><subject>Waterways</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUM1Kw0AYXETBUnvwDQKePET3281mswcPJdQqFCyi5_BlfzClycbNptC3N6UizmXmMMwwQ8gt0AfOFX3sg6ISqIILMmOMyVRJkJf_9DVZDMOOTlDAC5HPyNNSx-aA0ZqkxFD7LnE-JNsvDC1qO8ZG4z55t60_TIwx2fqmi6l36aqL4XhDrhzuB7v45Tn5fF59lC_p5m39Wi43qWaKxRRzmwnFLOcFcJCMFlQXYHIojBEcNWotKHPO1FLWzoIyGdLaOJAaCkTF5-TunNsH_z3aIVY7P4ZuqqyYEJk8rRaT6_7s0sEPQ7Cu6kPTYjhWQKvTQdXfQfwHGG5XGw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Finn, Michelle</creator><creator>Giampietro, Gabrielle</creator><creator>Mazyck, David</creator><creator>Rodriguez, Regina</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4555-9946</orcidid></search><sort><creationdate>20210701</creationdate><title>Activated Carbon for Pharmaceutical Removal at Point-of-Entry</title><author>Finn, Michelle ; Giampietro, Gabrielle ; Mazyck, David ; Rodriguez, Regina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-a6e4592e33813172080c81d618dd53acacc502ffdb77bfe19d4a0bdf17c18aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Chlorine</topic><topic>Contaminants</topic><topic>Cost control</topic><topic>Drinking water</topic><topic>Effluents</topic><topic>Fish reproduction</topic><topic>Ibuprofen</topic><topic>Impact damage</topic><topic>Methylene blue</topic><topic>Nitrogen</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Pharmaceuticals</topic><topic>Sodium</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><topic>Waterways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finn, Michelle</creatorcontrib><creatorcontrib>Giampietro, Gabrielle</creatorcontrib><creatorcontrib>Mazyck, David</creatorcontrib><creatorcontrib>Rodriguez, Regina</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finn, Michelle</au><au>Giampietro, Gabrielle</au><au>Mazyck, David</au><au>Rodriguez, Regina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activated Carbon for Pharmaceutical Removal at Point-of-Entry</atitle><jtitle>Processes</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>9</volume><issue>7</issue><spage>1091</spage><pages>1091-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr9071091</doi><orcidid>https://orcid.org/0000-0002-4555-9946</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2021-07, Vol.9 (7), p.1091 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2554707105 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Activated carbon Adsorption Chlorine Contaminants Cost control Drinking water Effluents Fish reproduction Ibuprofen Impact damage Methylene blue Nitrogen Nonsteroidal anti-inflammatory drugs Pharmaceuticals Sodium Wastewater treatment Water treatment Waterways |
title | Activated Carbon for Pharmaceutical Removal at Point-of-Entry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activated%20Carbon%20for%20Pharmaceutical%20Removal%20at%20Point-of-Entry&rft.jtitle=Processes&rft.au=Finn,%20Michelle&rft.date=2021-07-01&rft.volume=9&rft.issue=7&rft.spage=1091&rft.pages=1091-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr9071091&rft_dat=%3Cproquest_cross%3E2554707105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554707105&rft_id=info:pmid/&rfr_iscdi=true |