Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach
A collection of 10 high-impact extreme precipitation events occurring in Southeastern South America during the warm season has been analyzed using statistical (ESD) and dynamical downscaling approaches. Regional Climate Models from the CORDEX database for the South American domain at two horizontal...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2021-08, Vol.57 (3-4), p.1241-1264 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1264 |
---|---|
container_issue | 3-4 |
container_start_page | 1241 |
container_title | Climate dynamics |
container_volume | 57 |
creator | Solman, Silvina A. Bettolli, M. L. Doyle, M. E. Olmo, M. E. Feijoo, M. Martinez, D. Blázquez, J. Balmaceda Huarte, Rocio |
description | A collection of 10 high-impact extreme precipitation events occurring in Southeastern South America during the warm season has been analyzed using statistical (ESD) and dynamical downscaling approaches. Regional Climate Models from the CORDEX database for the South American domain at two horizontal resolutions, 50 km and 25 km, short-term simulations at 20 km and at 4 km convective-permitting resolution and statistical downscaling techniques based on the analogue method and the generalized linear model approach were evaluated. The analysis includes observational datasets based on gridded data, station data and satellite products that allow assessing the observational uncertainty that characterizes extreme events in the region. It is found that the ability of the modelling strategies in capturing the main features of the extreme rainfall varies across the events. The higher the horizontal resolution of the models, the more intense and localized the core of the rainfall event, being the location of the exit region of the low-level jet and the low-level moisture flux convergence during the initial stages of the events the most relevant features that determine models’ ability of capturing the location and intensity of the core of the heavy rainfall. ESD models based on the generalized linear approach overestimate the spatial extension of the events and underestimate the intensity of the local maxima. Weather-like convective-permitting simulations depict an overall good performance in reproducing both the rainfall patterns and the triggering mechanisms of the extreme events as expected, given that these simulations are strongly controlled by the initial conditions. |
doi_str_mv | 10.1007/s00382-021-05770-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2554675245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A669605313</galeid><sourcerecordid>A669605313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-2f89b26da5527b6c0415001cfe71bd07e782a706d915b58c2d97e19961864d103</originalsourceid><addsrcrecordid>eNp9kcGKFDEQhhtRcFx9AU8BQfDQa5JOOt3ehmXdXVgQXD2HTLp6Jks6aVPp0X0GX9qsLehcJIcixfdXUf9fVa8ZPWeUqvdIadPxmnJWU6kUrcWTasNEU1pdL55WG9o3tFZSyefVC8R7SploFd9UPy-Pxi8muxhIHMm0-OxmD2SI3wNa413YkxyjRzLGRNAVoMClCT9yggnInMC62eV1BBwhZCTxCIncxSUfwGCGFNYP2U6QnDUfiCHWIBDMy_BAzDynaOzhZfVsNB7h1Z96Vn39ePnl4rq-_XR1c7G9ra3gTa752PU73g5GSq52raWCyXKPHUGx3UAVqI4bRduhZ3InO8uHXgHr-5Z1rRgYbc6qN-vcsvbbApj1fVxSKCs1l7L4IrmQhTpfqb3xoF0YY07GljfA5GwMMLrS37Zt31LZsKYI3p0ICpOLS3uzIOqbu8-n7Nt_2OKSzweMfnk0EU9BvoI2RcQEo56Tm0x60Izqx-j1Gr0u0evf0WtRRM0qwgKHPaS_B_5H9QtsJ7Gf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554675245</pqid></control><display><type>article</type><title>Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Solman, Silvina A. ; Bettolli, M. L. ; Doyle, M. E. ; Olmo, M. E. ; Feijoo, M. ; Martinez, D. ; Blázquez, J. ; Balmaceda Huarte, Rocio</creator><creatorcontrib>Solman, Silvina A. ; Bettolli, M. L. ; Doyle, M. E. ; Olmo, M. E. ; Feijoo, M. ; Martinez, D. ; Blázquez, J. ; Balmaceda Huarte, Rocio</creatorcontrib><description>A collection of 10 high-impact extreme precipitation events occurring in Southeastern South America during the warm season has been analyzed using statistical (ESD) and dynamical downscaling approaches. Regional Climate Models from the CORDEX database for the South American domain at two horizontal resolutions, 50 km and 25 km, short-term simulations at 20 km and at 4 km convective-permitting resolution and statistical downscaling techniques based on the analogue method and the generalized linear model approach were evaluated. The analysis includes observational datasets based on gridded data, station data and satellite products that allow assessing the observational uncertainty that characterizes extreme events in the region. It is found that the ability of the modelling strategies in capturing the main features of the extreme rainfall varies across the events. The higher the horizontal resolution of the models, the more intense and localized the core of the rainfall event, being the location of the exit region of the low-level jet and the low-level moisture flux convergence during the initial stages of the events the most relevant features that determine models’ ability of capturing the location and intensity of the core of the heavy rainfall. ESD models based on the generalized linear approach overestimate the spatial extension of the events and underestimate the intensity of the local maxima. Weather-like convective-permitting simulations depict an overall good performance in reproducing both the rainfall patterns and the triggering mechanisms of the extreme events as expected, given that these simulations are strongly controlled by the initial conditions.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-021-05770-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atmospheric precipitations ; Climate models ; Climatology ; Earth and Environmental Science ; Earth Sciences ; Extreme weather ; Generalized linear models ; Geophysics/Geodesy ; Heavy rainfall ; Initial conditions ; Low-level jets ; Maxima ; Moisture flux ; Oceanography ; Precipitation ; Precipitation variability ; Rain ; Rain and rainfall ; Rainfall ; Rainfall patterns ; Regional climate models ; Regional climates ; Resolution ; Satellite observation ; Simulation ; Statistical analysis ; Statistical models ; Warm seasons</subject><ispartof>Climate dynamics, 2021-08, Vol.57 (3-4), p.1241-1264</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-2f89b26da5527b6c0415001cfe71bd07e782a706d915b58c2d97e19961864d103</citedby><cites>FETCH-LOGICAL-c423t-2f89b26da5527b6c0415001cfe71bd07e782a706d915b58c2d97e19961864d103</cites><orcidid>0000-0001-6693-9393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-021-05770-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-021-05770-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Solman, Silvina A.</creatorcontrib><creatorcontrib>Bettolli, M. L.</creatorcontrib><creatorcontrib>Doyle, M. E.</creatorcontrib><creatorcontrib>Olmo, M. E.</creatorcontrib><creatorcontrib>Feijoo, M.</creatorcontrib><creatorcontrib>Martinez, D.</creatorcontrib><creatorcontrib>Blázquez, J.</creatorcontrib><creatorcontrib>Balmaceda Huarte, Rocio</creatorcontrib><title>Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>A collection of 10 high-impact extreme precipitation events occurring in Southeastern South America during the warm season has been analyzed using statistical (ESD) and dynamical downscaling approaches. Regional Climate Models from the CORDEX database for the South American domain at two horizontal resolutions, 50 km and 25 km, short-term simulations at 20 km and at 4 km convective-permitting resolution and statistical downscaling techniques based on the analogue method and the generalized linear model approach were evaluated. The analysis includes observational datasets based on gridded data, station data and satellite products that allow assessing the observational uncertainty that characterizes extreme events in the region. It is found that the ability of the modelling strategies in capturing the main features of the extreme rainfall varies across the events. The higher the horizontal resolution of the models, the more intense and localized the core of the rainfall event, being the location of the exit region of the low-level jet and the low-level moisture flux convergence during the initial stages of the events the most relevant features that determine models’ ability of capturing the location and intensity of the core of the heavy rainfall. ESD models based on the generalized linear approach overestimate the spatial extension of the events and underestimate the intensity of the local maxima. Weather-like convective-permitting simulations depict an overall good performance in reproducing both the rainfall patterns and the triggering mechanisms of the extreme events as expected, given that these simulations are strongly controlled by the initial conditions.</description><subject>Atmospheric precipitations</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extreme weather</subject><subject>Generalized linear models</subject><subject>Geophysics/Geodesy</subject><subject>Heavy rainfall</subject><subject>Initial conditions</subject><subject>Low-level jets</subject><subject>Maxima</subject><subject>Moisture flux</subject><subject>Oceanography</subject><subject>Precipitation</subject><subject>Precipitation variability</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>Rainfall</subject><subject>Rainfall patterns</subject><subject>Regional climate models</subject><subject>Regional climates</subject><subject>Resolution</subject><subject>Satellite observation</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Warm seasons</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kcGKFDEQhhtRcFx9AU8BQfDQa5JOOt3ehmXdXVgQXD2HTLp6Jks6aVPp0X0GX9qsLehcJIcixfdXUf9fVa8ZPWeUqvdIadPxmnJWU6kUrcWTasNEU1pdL55WG9o3tFZSyefVC8R7SploFd9UPy-Pxi8muxhIHMm0-OxmD2SI3wNa413YkxyjRzLGRNAVoMClCT9yggnInMC62eV1BBwhZCTxCIncxSUfwGCGFNYP2U6QnDUfiCHWIBDMy_BAzDynaOzhZfVsNB7h1Z96Vn39ePnl4rq-_XR1c7G9ra3gTa752PU73g5GSq52raWCyXKPHUGx3UAVqI4bRduhZ3InO8uHXgHr-5Z1rRgYbc6qN-vcsvbbApj1fVxSKCs1l7L4IrmQhTpfqb3xoF0YY07GljfA5GwMMLrS37Zt31LZsKYI3p0ICpOLS3uzIOqbu8-n7Nt_2OKSzweMfnk0EU9BvoI2RcQEo56Tm0x60Izqx-j1Gr0u0evf0WtRRM0qwgKHPaS_B_5H9QtsJ7Gf</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Solman, Silvina A.</creator><creator>Bettolli, M. L.</creator><creator>Doyle, M. E.</creator><creator>Olmo, M. E.</creator><creator>Feijoo, M.</creator><creator>Martinez, D.</creator><creator>Blázquez, J.</creator><creator>Balmaceda Huarte, Rocio</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6693-9393</orcidid></search><sort><creationdate>20210801</creationdate><title>Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach</title><author>Solman, Silvina A. ; Bettolli, M. L. ; Doyle, M. E. ; Olmo, M. E. ; Feijoo, M. ; Martinez, D. ; Blázquez, J. ; Balmaceda Huarte, Rocio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-2f89b26da5527b6c0415001cfe71bd07e782a706d915b58c2d97e19961864d103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric precipitations</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extreme weather</topic><topic>Generalized linear models</topic><topic>Geophysics/Geodesy</topic><topic>Heavy rainfall</topic><topic>Initial conditions</topic><topic>Low-level jets</topic><topic>Maxima</topic><topic>Moisture flux</topic><topic>Oceanography</topic><topic>Precipitation</topic><topic>Precipitation variability</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>Rainfall</topic><topic>Rainfall patterns</topic><topic>Regional climate models</topic><topic>Regional climates</topic><topic>Resolution</topic><topic>Satellite observation</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Warm seasons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solman, Silvina A.</creatorcontrib><creatorcontrib>Bettolli, M. L.</creatorcontrib><creatorcontrib>Doyle, M. E.</creatorcontrib><creatorcontrib>Olmo, M. E.</creatorcontrib><creatorcontrib>Feijoo, M.</creatorcontrib><creatorcontrib>Martinez, D.</creatorcontrib><creatorcontrib>Blázquez, J.</creatorcontrib><creatorcontrib>Balmaceda Huarte, Rocio</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solman, Silvina A.</au><au>Bettolli, M. L.</au><au>Doyle, M. E.</au><au>Olmo, M. E.</au><au>Feijoo, M.</au><au>Martinez, D.</au><au>Blázquez, J.</au><au>Balmaceda Huarte, Rocio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>57</volume><issue>3-4</issue><spage>1241</spage><epage>1264</epage><pages>1241-1264</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>A collection of 10 high-impact extreme precipitation events occurring in Southeastern South America during the warm season has been analyzed using statistical (ESD) and dynamical downscaling approaches. Regional Climate Models from the CORDEX database for the South American domain at two horizontal resolutions, 50 km and 25 km, short-term simulations at 20 km and at 4 km convective-permitting resolution and statistical downscaling techniques based on the analogue method and the generalized linear model approach were evaluated. The analysis includes observational datasets based on gridded data, station data and satellite products that allow assessing the observational uncertainty that characterizes extreme events in the region. It is found that the ability of the modelling strategies in capturing the main features of the extreme rainfall varies across the events. The higher the horizontal resolution of the models, the more intense and localized the core of the rainfall event, being the location of the exit region of the low-level jet and the low-level moisture flux convergence during the initial stages of the events the most relevant features that determine models’ ability of capturing the location and intensity of the core of the heavy rainfall. ESD models based on the generalized linear approach overestimate the spatial extension of the events and underestimate the intensity of the local maxima. Weather-like convective-permitting simulations depict an overall good performance in reproducing both the rainfall patterns and the triggering mechanisms of the extreme events as expected, given that these simulations are strongly controlled by the initial conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-021-05770-4</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6693-9393</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2021-08, Vol.57 (3-4), p.1241-1264 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2554675245 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atmospheric precipitations Climate models Climatology Earth and Environmental Science Earth Sciences Extreme weather Generalized linear models Geophysics/Geodesy Heavy rainfall Initial conditions Low-level jets Maxima Moisture flux Oceanography Precipitation Precipitation variability Rain Rain and rainfall Rainfall Rainfall patterns Regional climate models Regional climates Resolution Satellite observation Simulation Statistical analysis Statistical models Warm seasons |
title | Evaluation of multiple downscaling tools for simulating extreme precipitation events over Southeastern South America: a case study approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20multiple%20downscaling%20tools%20for%20simulating%20extreme%20precipitation%20events%20over%20Southeastern%20South%20America:%20a%20case%20study%20approach&rft.jtitle=Climate%20dynamics&rft.au=Solman,%20Silvina%20A.&rft.date=2021-08-01&rft.volume=57&rft.issue=3-4&rft.spage=1241&rft.epage=1264&rft.pages=1241-1264&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-021-05770-4&rft_dat=%3Cgale_proqu%3EA669605313%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554675245&rft_id=info:pmid/&rft_galeid=A669605313&rfr_iscdi=true |