Adaptive most joint selection and covariance descriptions for a robust skeleton-based human action recognition
In this paper, we propose two effective manners of utilizing skeleton data for human action recognition (HAR). The proposed method on one hand takes advantage of the skeleton data thanks to their robustness to human appearance change as well as the real-time performance. On the other hand, it avoids...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2021-07, Vol.80 (18), p.27757-27783 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27783 |
---|---|
container_issue | 18 |
container_start_page | 27757 |
container_title | Multimedia tools and applications |
container_volume | 80 |
creator | Nguyen, Van-Toi Nguyen, Tien-Nam Le, Thi-Lan Pham, Dinh-Tan Vu, Hai |
description | In this paper, we propose two effective manners of utilizing skeleton data for human action recognition (HAR). The proposed method on one hand takes advantage of the skeleton data thanks to their robustness to human appearance change as well as the real-time performance. On the other hand, it avoids inherent drawbacks of the skeleton data such as noises, incorrect human skeleton estimation due to self-occlusion of human pose. To this end, in terms of feature designing, we propose to extract covariance descriptors from joint velocity and combine them with those of joint position. In terms of 3-D skeleton-based activity representation, we propose two schemes to select the most informative joints. The proposed method is evaluated on two benchmark datasets. On the MSRAction-3D dataset, the proposed method outperformed different hand-designed features-based methods. On the challenging dataset CMDFall, the proposed method significantly improves accuracy when compared with techniques based on recent neuronal networks. Finally, we investigate the robustness of the proposed method via a cross-dataset evaluation. |
doi_str_mv | 10.1007/s11042-021-10866-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554662244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554662244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-738188a6907750d8b96b97070308c6ffddc07ee49e491456999f1bb8bc15b5b73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Ekbb6Oy-IXLHjRc0jSdO26m9SkXfDfm1rBmzAwA_M-7wwvANcE3xKMxV0mBNcUYUoQwZJzVJ-ABWGiQkJQclrmSmIkGCbn4CLnHcaEM1ovQFg1ph-6o4eHmAe4i10YYPZ774YuBmhCA108mtSZ4DxsfHap66dVhm1M0MAU7VjA_FGYIQZkTfYNfB8PptCzSfIubkM3zZfgrDX77K9--xK8Pdy_rp_Q5uXxeb3aIFcRNSBRSSKl4QqL8nMjreJWCSxwhaXjbds0Dgvva1WK1IwrpVpirbSOMMusqJbgZvbtU_wcfR70Lo4plJOaMlZzTmldFxWdVS7FnJNvdZ-6g0lfmmA95arnXHXJVf_kqieomqFcxGHr05_1P9Q3_yJ8RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554662244</pqid></control><display><type>article</type><title>Adaptive most joint selection and covariance descriptions for a robust skeleton-based human action recognition</title><source>Springer Nature - Complete Springer Journals</source><creator>Nguyen, Van-Toi ; Nguyen, Tien-Nam ; Le, Thi-Lan ; Pham, Dinh-Tan ; Vu, Hai</creator><creatorcontrib>Nguyen, Van-Toi ; Nguyen, Tien-Nam ; Le, Thi-Lan ; Pham, Dinh-Tan ; Vu, Hai</creatorcontrib><description>In this paper, we propose two effective manners of utilizing skeleton data for human action recognition (HAR). The proposed method on one hand takes advantage of the skeleton data thanks to their robustness to human appearance change as well as the real-time performance. On the other hand, it avoids inherent drawbacks of the skeleton data such as noises, incorrect human skeleton estimation due to self-occlusion of human pose. To this end, in terms of feature designing, we propose to extract covariance descriptors from joint velocity and combine them with those of joint position. In terms of 3-D skeleton-based activity representation, we propose two schemes to select the most informative joints. The proposed method is evaluated on two benchmark datasets. On the MSRAction-3D dataset, the proposed method outperformed different hand-designed features-based methods. On the challenging dataset CMDFall, the proposed method significantly improves accuracy when compared with techniques based on recent neuronal networks. Finally, we investigate the robustness of the proposed method via a cross-dataset evaluation.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-10866-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Covariance ; Data Structures and Information Theory ; Datasets ; Feature extraction ; Human activity recognition ; Human motion ; Joints (anatomy) ; Multimedia Information Systems ; Neural networks ; Occlusion ; Robustness ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-07, Vol.80 (18), p.27757-27783</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-738188a6907750d8b96b97070308c6ffddc07ee49e491456999f1bb8bc15b5b73</citedby><cites>FETCH-LOGICAL-c319t-738188a6907750d8b96b97070308c6ffddc07ee49e491456999f1bb8bc15b5b73</cites><orcidid>0000-0001-9541-3905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-021-10866-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-021-10866-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Nguyen, Van-Toi</creatorcontrib><creatorcontrib>Nguyen, Tien-Nam</creatorcontrib><creatorcontrib>Le, Thi-Lan</creatorcontrib><creatorcontrib>Pham, Dinh-Tan</creatorcontrib><creatorcontrib>Vu, Hai</creatorcontrib><title>Adaptive most joint selection and covariance descriptions for a robust skeleton-based human action recognition</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, we propose two effective manners of utilizing skeleton data for human action recognition (HAR). The proposed method on one hand takes advantage of the skeleton data thanks to their robustness to human appearance change as well as the real-time performance. On the other hand, it avoids inherent drawbacks of the skeleton data such as noises, incorrect human skeleton estimation due to self-occlusion of human pose. To this end, in terms of feature designing, we propose to extract covariance descriptors from joint velocity and combine them with those of joint position. In terms of 3-D skeleton-based activity representation, we propose two schemes to select the most informative joints. The proposed method is evaluated on two benchmark datasets. On the MSRAction-3D dataset, the proposed method outperformed different hand-designed features-based methods. On the challenging dataset CMDFall, the proposed method significantly improves accuracy when compared with techniques based on recent neuronal networks. Finally, we investigate the robustness of the proposed method via a cross-dataset evaluation.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Covariance</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Human activity recognition</subject><subject>Human motion</subject><subject>Joints (anatomy)</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Robustness</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9Ekbb6Oy-IXLHjRc0jSdO26m9SkXfDfm1rBmzAwA_M-7wwvANcE3xKMxV0mBNcUYUoQwZJzVJ-ABWGiQkJQclrmSmIkGCbn4CLnHcaEM1ovQFg1ph-6o4eHmAe4i10YYPZ774YuBmhCA108mtSZ4DxsfHap66dVhm1M0MAU7VjA_FGYIQZkTfYNfB8PptCzSfIubkM3zZfgrDX77K9--xK8Pdy_rp_Q5uXxeb3aIFcRNSBRSSKl4QqL8nMjreJWCSxwhaXjbds0Dgvva1WK1IwrpVpirbSOMMusqJbgZvbtU_wcfR70Lo4plJOaMlZzTmldFxWdVS7FnJNvdZ-6g0lfmmA95arnXHXJVf_kqieomqFcxGHr05_1P9Q3_yJ8RQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Nguyen, Van-Toi</creator><creator>Nguyen, Tien-Nam</creator><creator>Le, Thi-Lan</creator><creator>Pham, Dinh-Tan</creator><creator>Vu, Hai</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9541-3905</orcidid></search><sort><creationdate>20210701</creationdate><title>Adaptive most joint selection and covariance descriptions for a robust skeleton-based human action recognition</title><author>Nguyen, Van-Toi ; Nguyen, Tien-Nam ; Le, Thi-Lan ; Pham, Dinh-Tan ; Vu, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-738188a6907750d8b96b97070308c6ffddc07ee49e491456999f1bb8bc15b5b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Covariance</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Human activity recognition</topic><topic>Human motion</topic><topic>Joints (anatomy)</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Robustness</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van-Toi</creatorcontrib><creatorcontrib>Nguyen, Tien-Nam</creatorcontrib><creatorcontrib>Le, Thi-Lan</creatorcontrib><creatorcontrib>Pham, Dinh-Tan</creatorcontrib><creatorcontrib>Vu, Hai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Van-Toi</au><au>Nguyen, Tien-Nam</au><au>Le, Thi-Lan</au><au>Pham, Dinh-Tan</au><au>Vu, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive most joint selection and covariance descriptions for a robust skeleton-based human action recognition</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>80</volume><issue>18</issue><spage>27757</spage><epage>27783</epage><pages>27757-27783</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, we propose two effective manners of utilizing skeleton data for human action recognition (HAR). The proposed method on one hand takes advantage of the skeleton data thanks to their robustness to human appearance change as well as the real-time performance. On the other hand, it avoids inherent drawbacks of the skeleton data such as noises, incorrect human skeleton estimation due to self-occlusion of human pose. To this end, in terms of feature designing, we propose to extract covariance descriptors from joint velocity and combine them with those of joint position. In terms of 3-D skeleton-based activity representation, we propose two schemes to select the most informative joints. The proposed method is evaluated on two benchmark datasets. On the MSRAction-3D dataset, the proposed method outperformed different hand-designed features-based methods. On the challenging dataset CMDFall, the proposed method significantly improves accuracy when compared with techniques based on recent neuronal networks. Finally, we investigate the robustness of the proposed method via a cross-dataset evaluation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-10866-4</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-9541-3905</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2021-07, Vol.80 (18), p.27757-27783 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2554662244 |
source | Springer Nature - Complete Springer Journals |
subjects | Computer Communication Networks Computer Science Covariance Data Structures and Information Theory Datasets Feature extraction Human activity recognition Human motion Joints (anatomy) Multimedia Information Systems Neural networks Occlusion Robustness Special Purpose and Application-Based Systems |
title | Adaptive most joint selection and covariance descriptions for a robust skeleton-based human action recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20most%20joint%20selection%20and%20covariance%20descriptions%20for%20a%20robust%20skeleton-based%20human%20action%20recognition&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Nguyen,%20Van-Toi&rft.date=2021-07-01&rft.volume=80&rft.issue=18&rft.spage=27757&rft.epage=27783&rft.pages=27757-27783&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-10866-4&rft_dat=%3Cproquest_cross%3E2554662244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554662244&rft_id=info:pmid/&rfr_iscdi=true |