A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation
Surface comparison and matching is a challenging problem in computer vision. While elastic Riemannian metrics provide meaningful shape distances and point correspondences via the geodesic boundary value problem, solving this problem numerically tends to be difficult. Square root normal fields consid...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2021-08, Vol.129 (8), p.2425-2444 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2444 |
---|---|
container_issue | 8 |
container_start_page | 2425 |
container_title | International journal of computer vision |
container_volume | 129 |
creator | Bauer, Martin Charon, Nicolas Harms, Philipp Hsieh, Hsi-Wei |
description | Surface comparison and matching is a challenging problem in computer vision. While elastic Riemannian metrics provide meaningful shape distances and point correspondences via the geodesic boundary value problem, solving this problem numerically tends to be difficult. Square root normal fields considerably simplify the computation of certain distances between parametrized surfaces. Yet they leave open the issue of finding optimal reparametrizations, which induce corresponding distances between unparametrized surfaces. This issue has concentrated much effort in recent years and led to the development of several numerical frameworks. In this paper, we take an alternative approach which bypasses the direct estimation of reparametrizations: we relax the geodesic boundary constraint using an auxiliary parametrization-blind varifold fidelity metric. This reformulation has several notable benefits. By avoiding altogether the need for reparametrizations, it provides the flexibility to deal with simplicial meshes of arbitrary topologies and sampling patterns. Moreover, the problem lends itself to a coarse-to-fine multi-resolution implementation, which makes the algorithm scalable to large meshes. Furthermore, this approach extends readily to higher-order feature maps such as square root curvature fields and is also able to include surface textures in the matching problem. We demonstrate these advantages on several examples, synthetic and real. |
doi_str_mv | 10.1007/s11263-021-01476-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2554652008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A669605305</galeid><sourcerecordid>A669605305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-950ede26d8dd3079da0f6c5e48156b54b97e5004a3f2071f624ccc4e52e0ae093</originalsourceid><addsrcrecordid>eNp9kVFrFDEQx4MoeJ5-AZ8CPgndOkk22dvH42j1oFba6nNIs5MzdTc5kyzqt2_sCtKXkoHA8PvPDPwIecvglAF0HzJjXIkGOGuAtZ1q1DOyYrITDWtBPicr6Dk0UvXsJXmV8x0A8A0XK3K1pZfzhMlbM9LzZCb8FdMP6mKiZ6PJxVt6MydnLNLPptjvPhxO6C5OR5N8juGEmjDQfSiYjnE0xcfwmrxwZsz45t-_Jt_Oz77uPjUXXz7ud9uLxoqel6aXgANyNWyGQUDXDwacshLbDZPqVra3fYcSoDXCceiYU7y11rYoOYJB6MWavFvmHlP8OWMu-i7OKdSVmkvZKskBNpU6XaiDGVH74GJJxtY34ORtDOh87W-V6hVIUWtN3j8KVKbg73Iwc856f3P9mOULa1PMOaHTx-Qnk_5oBvqvF7140dWLfvCiVQ2JJZQrHA6Y_t_9ROoeGfCOFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554652008</pqid></control><display><type>article</type><title>A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bauer, Martin ; Charon, Nicolas ; Harms, Philipp ; Hsieh, Hsi-Wei</creator><creatorcontrib>Bauer, Martin ; Charon, Nicolas ; Harms, Philipp ; Hsieh, Hsi-Wei</creatorcontrib><description>Surface comparison and matching is a challenging problem in computer vision. While elastic Riemannian metrics provide meaningful shape distances and point correspondences via the geodesic boundary value problem, solving this problem numerically tends to be difficult. Square root normal fields considerably simplify the computation of certain distances between parametrized surfaces. Yet they leave open the issue of finding optimal reparametrizations, which induce corresponding distances between unparametrized surfaces. This issue has concentrated much effort in recent years and led to the development of several numerical frameworks. In this paper, we take an alternative approach which bypasses the direct estimation of reparametrizations: we relax the geodesic boundary constraint using an auxiliary parametrization-blind varifold fidelity metric. This reformulation has several notable benefits. By avoiding altogether the need for reparametrizations, it provides the flexibility to deal with simplicial meshes of arbitrary topologies and sampling patterns. Moreover, the problem lends itself to a coarse-to-fine multi-resolution implementation, which makes the algorithm scalable to large meshes. Furthermore, this approach extends readily to higher-order feature maps such as square root curvature fields and is also able to include surface textures in the matching problem. We demonstrate these advantages on several examples, synthetic and real.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-021-01476-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applied mathematics ; Artificial Intelligence ; Boundary value problems ; Computer Imaging ; Computer Science ; Computer vision ; Feature maps ; Image Processing and Computer Vision ; Interpolation ; Machine vision ; Parameterization ; Pattern Recognition ; Pattern Recognition and Graphics ; Surface matching ; Topology ; Vision</subject><ispartof>International journal of computer vision, 2021-08, Vol.129 (8), p.2425-2444</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-950ede26d8dd3079da0f6c5e48156b54b97e5004a3f2071f624ccc4e52e0ae093</citedby><cites>FETCH-LOGICAL-c392t-950ede26d8dd3079da0f6c5e48156b54b97e5004a3f2071f624ccc4e52e0ae093</cites><orcidid>0000-0002-6032-247X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-021-01476-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-021-01476-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids></links><search><creatorcontrib>Bauer, Martin</creatorcontrib><creatorcontrib>Charon, Nicolas</creatorcontrib><creatorcontrib>Harms, Philipp</creatorcontrib><creatorcontrib>Hsieh, Hsi-Wei</creatorcontrib><title>A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>Surface comparison and matching is a challenging problem in computer vision. While elastic Riemannian metrics provide meaningful shape distances and point correspondences via the geodesic boundary value problem, solving this problem numerically tends to be difficult. Square root normal fields considerably simplify the computation of certain distances between parametrized surfaces. Yet they leave open the issue of finding optimal reparametrizations, which induce corresponding distances between unparametrized surfaces. This issue has concentrated much effort in recent years and led to the development of several numerical frameworks. In this paper, we take an alternative approach which bypasses the direct estimation of reparametrizations: we relax the geodesic boundary constraint using an auxiliary parametrization-blind varifold fidelity metric. This reformulation has several notable benefits. By avoiding altogether the need for reparametrizations, it provides the flexibility to deal with simplicial meshes of arbitrary topologies and sampling patterns. Moreover, the problem lends itself to a coarse-to-fine multi-resolution implementation, which makes the algorithm scalable to large meshes. Furthermore, this approach extends readily to higher-order feature maps such as square root curvature fields and is also able to include surface textures in the matching problem. We demonstrate these advantages on several examples, synthetic and real.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Artificial Intelligence</subject><subject>Boundary value problems</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Feature maps</subject><subject>Image Processing and Computer Vision</subject><subject>Interpolation</subject><subject>Machine vision</subject><subject>Parameterization</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Surface matching</subject><subject>Topology</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kVFrFDEQx4MoeJ5-AZ8CPgndOkk22dvH42j1oFba6nNIs5MzdTc5kyzqt2_sCtKXkoHA8PvPDPwIecvglAF0HzJjXIkGOGuAtZ1q1DOyYrITDWtBPicr6Dk0UvXsJXmV8x0A8A0XK3K1pZfzhMlbM9LzZCb8FdMP6mKiZ6PJxVt6MydnLNLPptjvPhxO6C5OR5N8juGEmjDQfSiYjnE0xcfwmrxwZsz45t-_Jt_Oz77uPjUXXz7ud9uLxoqel6aXgANyNWyGQUDXDwacshLbDZPqVra3fYcSoDXCceiYU7y11rYoOYJB6MWavFvmHlP8OWMu-i7OKdSVmkvZKskBNpU6XaiDGVH74GJJxtY34ORtDOh87W-V6hVIUWtN3j8KVKbg73Iwc856f3P9mOULa1PMOaHTx-Qnk_5oBvqvF7140dWLfvCiVQ2JJZQrHA6Y_t_9ROoeGfCOFw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Bauer, Martin</creator><creator>Charon, Nicolas</creator><creator>Harms, Philipp</creator><creator>Hsieh, Hsi-Wei</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6032-247X</orcidid></search><sort><creationdate>20210801</creationdate><title>A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation</title><author>Bauer, Martin ; Charon, Nicolas ; Harms, Philipp ; Hsieh, Hsi-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-950ede26d8dd3079da0f6c5e48156b54b97e5004a3f2071f624ccc4e52e0ae093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Artificial Intelligence</topic><topic>Boundary value problems</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Feature maps</topic><topic>Image Processing and Computer Vision</topic><topic>Interpolation</topic><topic>Machine vision</topic><topic>Parameterization</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Surface matching</topic><topic>Topology</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Martin</creatorcontrib><creatorcontrib>Charon, Nicolas</creatorcontrib><creatorcontrib>Harms, Philipp</creatorcontrib><creatorcontrib>Hsieh, Hsi-Wei</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Martin</au><au>Charon, Nicolas</au><au>Harms, Philipp</au><au>Hsieh, Hsi-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>129</volume><issue>8</issue><spage>2425</spage><epage>2444</epage><pages>2425-2444</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Surface comparison and matching is a challenging problem in computer vision. While elastic Riemannian metrics provide meaningful shape distances and point correspondences via the geodesic boundary value problem, solving this problem numerically tends to be difficult. Square root normal fields considerably simplify the computation of certain distances between parametrized surfaces. Yet they leave open the issue of finding optimal reparametrizations, which induce corresponding distances between unparametrized surfaces. This issue has concentrated much effort in recent years and led to the development of several numerical frameworks. In this paper, we take an alternative approach which bypasses the direct estimation of reparametrizations: we relax the geodesic boundary constraint using an auxiliary parametrization-blind varifold fidelity metric. This reformulation has several notable benefits. By avoiding altogether the need for reparametrizations, it provides the flexibility to deal with simplicial meshes of arbitrary topologies and sampling patterns. Moreover, the problem lends itself to a coarse-to-fine multi-resolution implementation, which makes the algorithm scalable to large meshes. Furthermore, this approach extends readily to higher-order feature maps such as square root curvature fields and is also able to include surface textures in the matching problem. We demonstrate these advantages on several examples, synthetic and real.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-021-01476-6</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6032-247X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2021-08, Vol.129 (8), p.2425-2444 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_journals_2554652008 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Applied mathematics Artificial Intelligence Boundary value problems Computer Imaging Computer Science Computer vision Feature maps Image Processing and Computer Vision Interpolation Machine vision Parameterization Pattern Recognition Pattern Recognition and Graphics Surface matching Topology Vision |
title | A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Framework%20for%20Elastic%20Surface%20Matching,%20Comparison,%20and%20Interpolation&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Bauer,%20Martin&rft.date=2021-08-01&rft.volume=129&rft.issue=8&rft.spage=2425&rft.epage=2444&rft.pages=2425-2444&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-021-01476-6&rft_dat=%3Cgale_proqu%3EA669605305%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554652008&rft_id=info:pmid/&rft_galeid=A669605305&rfr_iscdi=true |