Robust registration algorithm based on rational quadratic kernel for point sets with outliers and noise

This paper proposes a new rigid registration algorithm based on the rational quadratic kernel to align point sets with outliers and noise. First of all, the multi-source point sets may contain a lot of outliers and noise and the traditional registration algorithm cannot handle the outliers and noise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-07, Vol.80 (18), p.27925-27945
Hauptverfasser: Yao, Runzhao, Du, Shaoyi, Wan, Teng, Cui, Wenting, Yang, Yang, Jing, Yang, Li, Ce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27945
container_issue 18
container_start_page 27925
container_title Multimedia tools and applications
container_volume 80
creator Yao, Runzhao
Du, Shaoyi
Wan, Teng
Cui, Wenting
Yang, Yang
Jing, Yang
Li, Ce
description This paper proposes a new rigid registration algorithm based on the rational quadratic kernel to align point sets with outliers and noise. First of all, the multi-source point sets may contain a lot of outliers and noise and the traditional registration algorithm cannot handle the outliers and noise efficiently, this paper introduces the rational quadratic kernel to the rigid registration problem, which can resist outliers and suppress noise to improve the registration accuracy. Secondly, based on the new registration model, we present an iterative closest point (ICP) algorithm and use Lagrange multiplier and the singular value decomposition (SVD) to compute the rigid transformation. Moreover, the effect of the parameter is discussed detailly and a useful parameter control method is introduced to increase the accuracy and robustness of registration. A series of experiments on simulations and real data demonstrate that the proposed algorithm is more precise and robust than other algorithms.
doi_str_mv 10.1007/s11042-021-10851-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554650902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554650902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-131c2f45d6be233b0d1bd33a732bd915622eea638e75c7c8c490208b2eea20d13</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19HcpGk6Sxl8wYAgug5pm9aOnWYmN8Xx35uxgjtX93W-w-UQcgn8GjjXNwjAM8G4AAa8UMD2R2QGSkumtYDj1MuCM604nJIzxDXnkCuRzUj74ssRIw2u7TAGGzs_UNu3PnTxfUNLi66maTVdbE93o60PQ0U_XBhcTxsf6NZ3Q6ToItLPxFE_xr5zAakdajr4Dt05OWlsj-7it87J2_3d6_KRrZ4fnpa3K1ZJWEQGEirRZKrOSyekLHkNZS2l1VKU9QJULoRzNpeF06rSVVFlCy54UR62IonlnFxNvtvgd6PDaNZ-DOlxNEKpLFc8AUklJlUVPGJwjdmGbmPDlwFuDoGaKVCTAjU_gZp9guQEYRIPrQt_1v9Q39oZesM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554650902</pqid></control><display><type>article</type><title>Robust registration algorithm based on rational quadratic kernel for point sets with outliers and noise</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yao, Runzhao ; Du, Shaoyi ; Wan, Teng ; Cui, Wenting ; Yang, Yang ; Jing, Yang ; Li, Ce</creator><creatorcontrib>Yao, Runzhao ; Du, Shaoyi ; Wan, Teng ; Cui, Wenting ; Yang, Yang ; Jing, Yang ; Li, Ce</creatorcontrib><description>This paper proposes a new rigid registration algorithm based on the rational quadratic kernel to align point sets with outliers and noise. First of all, the multi-source point sets may contain a lot of outliers and noise and the traditional registration algorithm cannot handle the outliers and noise efficiently, this paper introduces the rational quadratic kernel to the rigid registration problem, which can resist outliers and suppress noise to improve the registration accuracy. Secondly, based on the new registration model, we present an iterative closest point (ICP) algorithm and use Lagrange multiplier and the singular value decomposition (SVD) to compute the rigid transformation. Moreover, the effect of the parameter is discussed detailly and a useful parameter control method is introduced to increase the accuracy and robustness of registration. A series of experiments on simulations and real data demonstrate that the proposed algorithm is more precise and robust than other algorithms.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-10851-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Computer Communication Networks ; Computer Science ; Control methods ; Data Structures and Information Theory ; Iterative algorithms ; Kernels ; Lagrange multiplier ; Multimedia Information Systems ; Noise ; Outliers (statistics) ; Parameters ; Registration ; Robustness ; Singular value decomposition ; Special Purpose and Application-Based Systems ; Three dimensional models</subject><ispartof>Multimedia tools and applications, 2021-07, Vol.80 (18), p.27925-27945</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-131c2f45d6be233b0d1bd33a732bd915622eea638e75c7c8c490208b2eea20d13</citedby><cites>FETCH-LOGICAL-c319t-131c2f45d6be233b0d1bd33a732bd915622eea638e75c7c8c490208b2eea20d13</cites><orcidid>0000-0002-7092-0596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-021-10851-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-021-10851-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Yao, Runzhao</creatorcontrib><creatorcontrib>Du, Shaoyi</creatorcontrib><creatorcontrib>Wan, Teng</creatorcontrib><creatorcontrib>Cui, Wenting</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jing, Yang</creatorcontrib><creatorcontrib>Li, Ce</creatorcontrib><title>Robust registration algorithm based on rational quadratic kernel for point sets with outliers and noise</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This paper proposes a new rigid registration algorithm based on the rational quadratic kernel to align point sets with outliers and noise. First of all, the multi-source point sets may contain a lot of outliers and noise and the traditional registration algorithm cannot handle the outliers and noise efficiently, this paper introduces the rational quadratic kernel to the rigid registration problem, which can resist outliers and suppress noise to improve the registration accuracy. Secondly, based on the new registration model, we present an iterative closest point (ICP) algorithm and use Lagrange multiplier and the singular value decomposition (SVD) to compute the rigid transformation. Moreover, the effect of the parameter is discussed detailly and a useful parameter control method is introduced to increase the accuracy and robustness of registration. A series of experiments on simulations and real data demonstrate that the proposed algorithm is more precise and robust than other algorithms.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Control methods</subject><subject>Data Structures and Information Theory</subject><subject>Iterative algorithms</subject><subject>Kernels</subject><subject>Lagrange multiplier</subject><subject>Multimedia Information Systems</subject><subject>Noise</subject><subject>Outliers (statistics)</subject><subject>Parameters</subject><subject>Registration</subject><subject>Robustness</subject><subject>Singular value decomposition</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Three dimensional models</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19HcpGk6Sxl8wYAgug5pm9aOnWYmN8Xx35uxgjtX93W-w-UQcgn8GjjXNwjAM8G4AAa8UMD2R2QGSkumtYDj1MuCM604nJIzxDXnkCuRzUj74ssRIw2u7TAGGzs_UNu3PnTxfUNLi66maTVdbE93o60PQ0U_XBhcTxsf6NZ3Q6ToItLPxFE_xr5zAakdajr4Dt05OWlsj-7it87J2_3d6_KRrZ4fnpa3K1ZJWEQGEirRZKrOSyekLHkNZS2l1VKU9QJULoRzNpeF06rSVVFlCy54UR62IonlnFxNvtvgd6PDaNZ-DOlxNEKpLFc8AUklJlUVPGJwjdmGbmPDlwFuDoGaKVCTAjU_gZp9guQEYRIPrQt_1v9Q39oZesM</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Yao, Runzhao</creator><creator>Du, Shaoyi</creator><creator>Wan, Teng</creator><creator>Cui, Wenting</creator><creator>Yang, Yang</creator><creator>Jing, Yang</creator><creator>Li, Ce</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7092-0596</orcidid></search><sort><creationdate>20210701</creationdate><title>Robust registration algorithm based on rational quadratic kernel for point sets with outliers and noise</title><author>Yao, Runzhao ; Du, Shaoyi ; Wan, Teng ; Cui, Wenting ; Yang, Yang ; Jing, Yang ; Li, Ce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-131c2f45d6be233b0d1bd33a732bd915622eea638e75c7c8c490208b2eea20d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Control methods</topic><topic>Data Structures and Information Theory</topic><topic>Iterative algorithms</topic><topic>Kernels</topic><topic>Lagrange multiplier</topic><topic>Multimedia Information Systems</topic><topic>Noise</topic><topic>Outliers (statistics)</topic><topic>Parameters</topic><topic>Registration</topic><topic>Robustness</topic><topic>Singular value decomposition</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Runzhao</creatorcontrib><creatorcontrib>Du, Shaoyi</creatorcontrib><creatorcontrib>Wan, Teng</creatorcontrib><creatorcontrib>Cui, Wenting</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jing, Yang</creatorcontrib><creatorcontrib>Li, Ce</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Runzhao</au><au>Du, Shaoyi</au><au>Wan, Teng</au><au>Cui, Wenting</au><au>Yang, Yang</au><au>Jing, Yang</au><au>Li, Ce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust registration algorithm based on rational quadratic kernel for point sets with outliers and noise</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>80</volume><issue>18</issue><spage>27925</spage><epage>27945</epage><pages>27925-27945</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This paper proposes a new rigid registration algorithm based on the rational quadratic kernel to align point sets with outliers and noise. First of all, the multi-source point sets may contain a lot of outliers and noise and the traditional registration algorithm cannot handle the outliers and noise efficiently, this paper introduces the rational quadratic kernel to the rigid registration problem, which can resist outliers and suppress noise to improve the registration accuracy. Secondly, based on the new registration model, we present an iterative closest point (ICP) algorithm and use Lagrange multiplier and the singular value decomposition (SVD) to compute the rigid transformation. Moreover, the effect of the parameter is discussed detailly and a useful parameter control method is introduced to increase the accuracy and robustness of registration. A series of experiments on simulations and real data demonstrate that the proposed algorithm is more precise and robust than other algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-10851-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7092-0596</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021-07, Vol.80 (18), p.27925-27945
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2554650902
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Algorithms
Computer Communication Networks
Computer Science
Control methods
Data Structures and Information Theory
Iterative algorithms
Kernels
Lagrange multiplier
Multimedia Information Systems
Noise
Outliers (statistics)
Parameters
Registration
Robustness
Singular value decomposition
Special Purpose and Application-Based Systems
Three dimensional models
title Robust registration algorithm based on rational quadratic kernel for point sets with outliers and noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20registration%20algorithm%20based%20on%20rational%20quadratic%20kernel%20for%20point%20sets%20with%20outliers%20and%20noise&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Yao,%20Runzhao&rft.date=2021-07-01&rft.volume=80&rft.issue=18&rft.spage=27925&rft.epage=27945&rft.pages=27925-27945&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-10851-x&rft_dat=%3Cproquest_cross%3E2554650902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554650902&rft_id=info:pmid/&rfr_iscdi=true