Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control
•A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Al...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2021-08, Vol.169, p.112480, Article 112480 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112480 |
container_title | Fusion engineering and design |
container_volume | 169 |
creator | Gerkšič, Samo Pregelj, Boštjan |
description | •A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card.
In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation. |
doi_str_mv | 10.1016/j.fusengdes.2021.112480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554645204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379621002568</els_id><sourcerecordid>2554645204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-99e54d32314f35dce87b448b3eeb0f7d5e9cd91cf8717203a1f788d1592516733</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwYDnrfmzu9kcS2m1UFCknsM2mdSU7aYmaYvf3m1XvQoDc5j33vB-CN1TMqKElo-bkd1HaNcG4ogRRkeUsrwiF2hAK8EzQWV5iQZEMpJxIctrdBPjhhAquhmg9cy1LkF29MFkTReTPvDs9WmM3XbXwBbaVCfnW-wt3noDDd4FME4ndwCsfZuCb7D1Ac-X0zccILp4Ph3rpjkbfkW36MrWTYS7nz1E77PpcvKcLV6e5pPxItOskimTEorccMZpbnlhNFRilefVigOsiBWmAKmNpNpWggpGeE2tqCpDC8kKWgrOh-ihz90F_7mHmNTG70PbvVSsKPIyLxjJO5XoVTr4GANYtQtuW4cvRYk6UVUb9UdVnaiqnmrnHPdO6EocHAQVtYNWd1AC6KSMd_9mfAMWfIUa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554645204</pqid></control><display><type>article</type><title>Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gerkšič, Samo ; Pregelj, Boštjan</creator><creatorcontrib>Gerkšič, Samo ; Pregelj, Boštjan</creatorcontrib><description>•A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card.
In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2021.112480</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Active control ; Algorithms ; Control algorithms ; Fast gradient method ; Feedback control ; Field programmable gate arrays ; FPGA ; Optimization ; Personal computers ; Plasma magnetic control ; Plasma pressure ; Predictive control ; Quadratic programming ; Tokamak devices</subject><ispartof>Fusion engineering and design, 2021-08, Vol.169, p.112480, Article 112480</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-99e54d32314f35dce87b448b3eeb0f7d5e9cd91cf8717203a1f788d1592516733</cites><orcidid>0000-0002-7068-663X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2021.112480$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><title>Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control</title><title>Fusion engineering and design</title><description>•A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card.
In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Fast gradient method</subject><subject>Feedback control</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Optimization</subject><subject>Personal computers</subject><subject>Plasma magnetic control</subject><subject>Plasma pressure</subject><subject>Predictive control</subject><subject>Quadratic programming</subject><subject>Tokamak devices</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwYDnrfmzu9kcS2m1UFCknsM2mdSU7aYmaYvf3m1XvQoDc5j33vB-CN1TMqKElo-bkd1HaNcG4ogRRkeUsrwiF2hAK8EzQWV5iQZEMpJxIctrdBPjhhAquhmg9cy1LkF29MFkTReTPvDs9WmM3XbXwBbaVCfnW-wt3noDDd4FME4ndwCsfZuCb7D1Ac-X0zccILp4Ph3rpjkbfkW36MrWTYS7nz1E77PpcvKcLV6e5pPxItOskimTEorccMZpbnlhNFRilefVigOsiBWmAKmNpNpWggpGeE2tqCpDC8kKWgrOh-ihz90F_7mHmNTG70PbvVSsKPIyLxjJO5XoVTr4GANYtQtuW4cvRYk6UVUb9UdVnaiqnmrnHPdO6EocHAQVtYNWd1AC6KSMd_9mfAMWfIUa</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Gerkšič, Samo</creator><creator>Pregelj, Boštjan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid></search><sort><creationdate>202108</creationdate><title>Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control</title><author>Gerkšič, Samo ; Pregelj, Boštjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-99e54d32314f35dce87b448b3eeb0f7d5e9cd91cf8717203a1f788d1592516733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Fast gradient method</topic><topic>Feedback control</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Optimization</topic><topic>Personal computers</topic><topic>Plasma magnetic control</topic><topic>Plasma pressure</topic><topic>Predictive control</topic><topic>Quadratic programming</topic><topic>Tokamak devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerkšič, Samo</au><au>Pregelj, Boštjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control</atitle><jtitle>Fusion engineering and design</jtitle><date>2021-08</date><risdate>2021</risdate><volume>169</volume><spage>112480</spage><pages>112480-</pages><artnum>112480</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card.
In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2021.112480</doi><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2021-08, Vol.169, p.112480, Article 112480 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_journals_2554645204 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Active control Algorithms Control algorithms Fast gradient method Feedback control Field programmable gate arrays FPGA Optimization Personal computers Plasma magnetic control Plasma pressure Predictive control Quadratic programming Tokamak devices |
title | Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-word-length%20FPGA%20implementation%20of%20model%20predictive%20control%20for%20ITER%20resistive%20wall%20mode%20control&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Gerk%C5%A1i%C4%8D,%20Samo&rft.date=2021-08&rft.volume=169&rft.spage=112480&rft.pages=112480-&rft.artnum=112480&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2021.112480&rft_dat=%3Cproquest_cross%3E2554645204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554645204&rft_id=info:pmid/&rft_els_id=S0920379621002568&rfr_iscdi=true |