Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control

•A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2021-08, Vol.169, p.112480, Article 112480
Hauptverfasser: Gerkšič, Samo, Pregelj, Boštjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112480
container_title Fusion engineering and design
container_volume 169
creator Gerkšič, Samo
Pregelj, Boštjan
description •A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card. In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation.
doi_str_mv 10.1016/j.fusengdes.2021.112480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554645204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379621002568</els_id><sourcerecordid>2554645204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-99e54d32314f35dce87b448b3eeb0f7d5e9cd91cf8717203a1f788d1592516733</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwYDnrfmzu9kcS2m1UFCknsM2mdSU7aYmaYvf3m1XvQoDc5j33vB-CN1TMqKElo-bkd1HaNcG4ogRRkeUsrwiF2hAK8EzQWV5iQZEMpJxIctrdBPjhhAquhmg9cy1LkF29MFkTReTPvDs9WmM3XbXwBbaVCfnW-wt3noDDd4FME4ndwCsfZuCb7D1Ac-X0zccILp4Ph3rpjkbfkW36MrWTYS7nz1E77PpcvKcLV6e5pPxItOskimTEorccMZpbnlhNFRilefVigOsiBWmAKmNpNpWggpGeE2tqCpDC8kKWgrOh-ihz90F_7mHmNTG70PbvVSsKPIyLxjJO5XoVTr4GANYtQtuW4cvRYk6UVUb9UdVnaiqnmrnHPdO6EocHAQVtYNWd1AC6KSMd_9mfAMWfIUa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554645204</pqid></control><display><type>article</type><title>Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gerkšič, Samo ; Pregelj, Boštjan</creator><creatorcontrib>Gerkšič, Samo ; Pregelj, Boštjan</creatorcontrib><description>•A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card. In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2021.112480</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Active control ; Algorithms ; Control algorithms ; Fast gradient method ; Feedback control ; Field programmable gate arrays ; FPGA ; Optimization ; Personal computers ; Plasma magnetic control ; Plasma pressure ; Predictive control ; Quadratic programming ; Tokamak devices</subject><ispartof>Fusion engineering and design, 2021-08, Vol.169, p.112480, Article 112480</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-99e54d32314f35dce87b448b3eeb0f7d5e9cd91cf8717203a1f788d1592516733</cites><orcidid>0000-0002-7068-663X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2021.112480$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><title>Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control</title><title>Fusion engineering and design</title><description>•A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card. In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Fast gradient method</subject><subject>Feedback control</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Optimization</subject><subject>Personal computers</subject><subject>Plasma magnetic control</subject><subject>Plasma pressure</subject><subject>Predictive control</subject><subject>Quadratic programming</subject><subject>Tokamak devices</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwYDnrfmzu9kcS2m1UFCknsM2mdSU7aYmaYvf3m1XvQoDc5j33vB-CN1TMqKElo-bkd1HaNcG4ogRRkeUsrwiF2hAK8EzQWV5iQZEMpJxIctrdBPjhhAquhmg9cy1LkF29MFkTReTPvDs9WmM3XbXwBbaVCfnW-wt3noDDd4FME4ndwCsfZuCb7D1Ac-X0zccILp4Ph3rpjkbfkW36MrWTYS7nz1E77PpcvKcLV6e5pPxItOskimTEorccMZpbnlhNFRilefVigOsiBWmAKmNpNpWggpGeE2tqCpDC8kKWgrOh-ihz90F_7mHmNTG70PbvVSsKPIyLxjJO5XoVTr4GANYtQtuW4cvRYk6UVUb9UdVnaiqnmrnHPdO6EocHAQVtYNWd1AC6KSMd_9mfAMWfIUa</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Gerkšič, Samo</creator><creator>Pregelj, Boštjan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid></search><sort><creationdate>202108</creationdate><title>Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control</title><author>Gerkšič, Samo ; Pregelj, Boštjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-99e54d32314f35dce87b448b3eeb0f7d5e9cd91cf8717203a1f788d1592516733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Fast gradient method</topic><topic>Feedback control</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Optimization</topic><topic>Personal computers</topic><topic>Plasma magnetic control</topic><topic>Plasma pressure</topic><topic>Predictive control</topic><topic>Quadratic programming</topic><topic>Tokamak devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerkšič, Samo</creatorcontrib><creatorcontrib>Pregelj, Boštjan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerkšič, Samo</au><au>Pregelj, Boštjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control</atitle><jtitle>Fusion engineering and design</jtitle><date>2021-08</date><risdate>2021</risdate><volume>169</volume><spage>112480</spage><pages>112480-</pages><artnum>112480</artnum><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•A fast implementation of model predictive control is presented.•The primal fast gradient method is used for online optimization.•Finite-word-length arithmetic is efficient for FPGA implementation.•A high-level synthesis approach for FPGA programming is used.•The approach is tested using a Xilinx Alveo U250 accelerator card. In advanced tokamak scenarios, active feedback control of unstable resistive wall modes (RWM) may be required. A RWM is an instability due to plasma kink at higher plasma pressure, moderated by the presence of a resistive wall surrounding the plasma. We address the dominant kink instability associated with the main non-axisymmetric (n = 1) RWM, described by the CarMa model. Model predictive control (MPC) is used, with the aim of enlarging the domain of attraction of the unstable RWM modes subject to power-supply voltage constraints. The implementation of MPC is challenging, because the related quadratic programming (QP) on-line optimization problems must be solved at a sub-ms sampling rate. Using complexity-reduction pre-processing techniques and a primal fast gradient method (FGM) QP solver, sufficiently short computation times for ITER are reachable using a standard personal computer (PC). In this work we explore even faster finite-word-length (FWL) implementation using field-programmable gate arrays (FPGA), which would facilitate experimental testing of such control algorithms on dynamically faster medium-sized tokamaks, and compare the computational accuracy and time with the PC implementation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2021.112480</doi><orcidid>https://orcid.org/0000-0002-7068-663X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2021-08, Vol.169, p.112480, Article 112480
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_journals_2554645204
source Elsevier ScienceDirect Journals Complete
subjects Active control
Algorithms
Control algorithms
Fast gradient method
Feedback control
Field programmable gate arrays
FPGA
Optimization
Personal computers
Plasma magnetic control
Plasma pressure
Predictive control
Quadratic programming
Tokamak devices
title Finite-word-length FPGA implementation of model predictive control for ITER resistive wall mode control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-word-length%20FPGA%20implementation%20of%20model%20predictive%20control%20for%20ITER%20resistive%20wall%20mode%20control&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Gerk%C5%A1i%C4%8D,%20Samo&rft.date=2021-08&rft.volume=169&rft.spage=112480&rft.pages=112480-&rft.artnum=112480&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2021.112480&rft_dat=%3Cproquest_cross%3E2554645204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554645204&rft_id=info:pmid/&rft_els_id=S0920379621002568&rfr_iscdi=true