An Involutive GVW Algorithm and the Computation of Pommaret Bases
The GVW algorithm computes simultaneously Gröbner bases of a given ideal and of the syzygy module of the given generating set. In this work, we discuss an extension of it to involutive bases. Pommaret bases play here a special role in several respects. We distinguish between a fully involutive GVW a...
Gespeichert in:
Veröffentlicht in: | Mathematics in computer science 2021-09, Vol.15 (3), p.419-452 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 452 |
---|---|
container_issue | 3 |
container_start_page | 419 |
container_title | Mathematics in computer science |
container_volume | 15 |
creator | Hashemi, Amir Izgin, Thomas Robertz, Daniel Seiler, Werner M. |
description | The GVW algorithm computes simultaneously Gröbner bases of a given ideal and of the syzygy module of the given generating set. In this work, we discuss an extension of it to involutive bases. Pommaret bases play here a special role in several respects. We distinguish between a fully involutive GVW algorithm which determines involutive bases for both the given ideal and the syzygy module and a semi-involutive version which computes for the syzygy module only an ordinary Gröbner basis. A prototype implementation of the developed algorithms in
Maple
is described. |
doi_str_mv | 10.1007/s11786-021-00512-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554614009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554614009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-d261382850e11842033869e985d7e9c3d5ed92250c29480209870fa21d138ade3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfunNixx1BBqVQJBj5GK0qcNlUSF9upxL_HEAQb093wPu-dHkIuEa4RIL_xiLkUCTBMADiyhB-RGQqBiWRSHf_uOZySM-93AIJhhjNSFANdDQfbjaE9GLp8faNFt7GuDduelkNNw9bQhe33YyhDawdqG_pk-750JtDb0ht_Tk6asvPm4mfOycv93fPiIVk_LleLYp1UKWYhqZnAND7DwSDKjEGaSqGMkrzOjarSmptaMcahYiqTwEDJHJqSYR2xsjbpnFxNvXtn30fjg97Z0Q3xpGacZwIzABVTbEpVznrvTKP3ro3ffmgE_aVKT6p0VKW_VWkeoXSCfAwPG-P-qv-hPgFJX2j_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554614009</pqid></control><display><type>article</type><title>An Involutive GVW Algorithm and the Computation of Pommaret Bases</title><source>SpringerNature Journals</source><creator>Hashemi, Amir ; Izgin, Thomas ; Robertz, Daniel ; Seiler, Werner M.</creator><creatorcontrib>Hashemi, Amir ; Izgin, Thomas ; Robertz, Daniel ; Seiler, Werner M.</creatorcontrib><description>The GVW algorithm computes simultaneously Gröbner bases of a given ideal and of the syzygy module of the given generating set. In this work, we discuss an extension of it to involutive bases. Pommaret bases play here a special role in several respects. We distinguish between a fully involutive GVW algorithm which determines involutive bases for both the given ideal and the syzygy module and a semi-involutive version which computes for the syzygy module only an ordinary Gröbner basis. A prototype implementation of the developed algorithms in
Maple
is described.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-021-00512-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Computer Science ; Mathematics ; Mathematics and Statistics ; Modules</subject><ispartof>Mathematics in computer science, 2021-09, Vol.15 (3), p.419-452</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-d261382850e11842033869e985d7e9c3d5ed92250c29480209870fa21d138ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11786-021-00512-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11786-021-00512-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hashemi, Amir</creatorcontrib><creatorcontrib>Izgin, Thomas</creatorcontrib><creatorcontrib>Robertz, Daniel</creatorcontrib><creatorcontrib>Seiler, Werner M.</creatorcontrib><title>An Involutive GVW Algorithm and the Computation of Pommaret Bases</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>The GVW algorithm computes simultaneously Gröbner bases of a given ideal and of the syzygy module of the given generating set. In this work, we discuss an extension of it to involutive bases. Pommaret bases play here a special role in several respects. We distinguish between a fully involutive GVW algorithm which determines involutive bases for both the given ideal and the syzygy module and a semi-involutive version which computes for the syzygy module only an ordinary Gröbner basis. A prototype implementation of the developed algorithms in
Maple
is described.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfunNixx1BBqVQJBj5GK0qcNlUSF9upxL_HEAQb093wPu-dHkIuEa4RIL_xiLkUCTBMADiyhB-RGQqBiWRSHf_uOZySM-93AIJhhjNSFANdDQfbjaE9GLp8faNFt7GuDduelkNNw9bQhe33YyhDawdqG_pk-750JtDb0ht_Tk6asvPm4mfOycv93fPiIVk_LleLYp1UKWYhqZnAND7DwSDKjEGaSqGMkrzOjarSmptaMcahYiqTwEDJHJqSYR2xsjbpnFxNvXtn30fjg97Z0Q3xpGacZwIzABVTbEpVznrvTKP3ro3ffmgE_aVKT6p0VKW_VWkeoXSCfAwPG-P-qv-hPgFJX2j_</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Hashemi, Amir</creator><creator>Izgin, Thomas</creator><creator>Robertz, Daniel</creator><creator>Seiler, Werner M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>An Involutive GVW Algorithm and the Computation of Pommaret Bases</title><author>Hashemi, Amir ; Izgin, Thomas ; Robertz, Daniel ; Seiler, Werner M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-d261382850e11842033869e985d7e9c3d5ed92250c29480209870fa21d138ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashemi, Amir</creatorcontrib><creatorcontrib>Izgin, Thomas</creatorcontrib><creatorcontrib>Robertz, Daniel</creatorcontrib><creatorcontrib>Seiler, Werner M.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashemi, Amir</au><au>Izgin, Thomas</au><au>Robertz, Daniel</au><au>Seiler, Werner M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Involutive GVW Algorithm and the Computation of Pommaret Bases</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>15</volume><issue>3</issue><spage>419</spage><epage>452</epage><pages>419-452</pages><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>The GVW algorithm computes simultaneously Gröbner bases of a given ideal and of the syzygy module of the given generating set. In this work, we discuss an extension of it to involutive bases. Pommaret bases play here a special role in several respects. We distinguish between a fully involutive GVW algorithm which determines involutive bases for both the given ideal and the syzygy module and a semi-involutive version which computes for the syzygy module only an ordinary Gröbner basis. A prototype implementation of the developed algorithms in
Maple
is described.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-021-00512-5</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8270 |
ispartof | Mathematics in computer science, 2021-09, Vol.15 (3), p.419-452 |
issn | 1661-8270 1661-8289 |
language | eng |
recordid | cdi_proquest_journals_2554614009 |
source | SpringerNature Journals |
subjects | Algorithms Computer Science Mathematics Mathematics and Statistics Modules |
title | An Involutive GVW Algorithm and the Computation of Pommaret Bases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Involutive%20GVW%20Algorithm%20and%20the%20Computation%20of%20Pommaret%20Bases&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Hashemi,%20Amir&rft.date=2021-09-01&rft.volume=15&rft.issue=3&rft.spage=419&rft.epage=452&rft.pages=419-452&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-021-00512-5&rft_dat=%3Cproquest_cross%3E2554614009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554614009&rft_id=info:pmid/&rfr_iscdi=true |