Reflected Backward Stochastic Differential Equation with Rank-Based Data

In this paper, we study reflected backward stochastic differential equation (reflected BSDE) with rank-based data in a Markovian framework; that is, the solution to the reflected BSDE is above a prescribed boundary process in a minimal fashion and the generator and terminal value of the reflected BS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2021-09, Vol.34 (3), p.1213-1247
Hauptverfasser: Chen, Zhen-Qing, Feng, Xinwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1247
container_issue 3
container_start_page 1213
container_title Journal of theoretical probability
container_volume 34
creator Chen, Zhen-Qing
Feng, Xinwei
description In this paper, we study reflected backward stochastic differential equation (reflected BSDE) with rank-based data in a Markovian framework; that is, the solution to the reflected BSDE is above a prescribed boundary process in a minimal fashion and the generator and terminal value of the reflected BSDE depend on the solution of another stochastic differential equation (SDE) with rank-based drift and diffusion coefficients. We derive regularity properties of the solution to such reflected BSDE and show that the solution at the initial starting time t and position x , which is a deterministic function, is the unique viscosity solution to some obstacle problem (or variational inequality) for the corresponding parabolic partial differential equation.
doi_str_mv 10.1007/s10959-020-01026-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554376770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554376770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4e05c61db2dca6efb84141978512ae37051f1806fe9d88b6ae5de6481bd714043</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKdfwFPBc_RNmjTJ0f3RCQNh6jmkaeK61XZLMobf3moFb57ey_P8XngQuiZwSwDEXSSguMJAAQMBWmB1gkaEC4oVzeEUjUAqhpVkcI4uYtwAgFIAI7RYOd84m1yVTYzdHk2ospfU2bWJqbbZrPbeBdem2jTZfH8wqe7a7FindbYy7RZPTOzNmUnmEp1500R39XvH6O1h_jpd4OXz49P0foktFZAwc8BtQaqSVtYUzpeSEUaUkJxQ43IBnHgiofBOVVKWhXG8cgWTpKwEYcDyMboZdneh2x9cTHrTHULbv9SUc5aLQgjoKTpQNnQxBuf1LtQfJnxqAvq7mB6K6b6Y_immVS_lgxR7uH134W_6H-sLR1xtPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554376770</pqid></control><display><type>article</type><title>Reflected Backward Stochastic Differential Equation with Rank-Based Data</title><source>SpringerNature Journals</source><creator>Chen, Zhen-Qing ; Feng, Xinwei</creator><creatorcontrib>Chen, Zhen-Qing ; Feng, Xinwei</creatorcontrib><description>In this paper, we study reflected backward stochastic differential equation (reflected BSDE) with rank-based data in a Markovian framework; that is, the solution to the reflected BSDE is above a prescribed boundary process in a minimal fashion and the generator and terminal value of the reflected BSDE depend on the solution of another stochastic differential equation (SDE) with rank-based drift and diffusion coefficients. We derive regularity properties of the solution to such reflected BSDE and show that the solution at the initial starting time t and position x , which is a deterministic function, is the unique viscosity solution to some obstacle problem (or variational inequality) for the corresponding parabolic partial differential equation.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-020-01026-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Parabolic differential equations ; Partial differential equations ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Journal of theoretical probability, 2021-09, Vol.34 (3), p.1213-1247</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4e05c61db2dca6efb84141978512ae37051f1806fe9d88b6ae5de6481bd714043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-020-01026-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-020-01026-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Zhen-Qing</creatorcontrib><creatorcontrib>Feng, Xinwei</creatorcontrib><title>Reflected Backward Stochastic Differential Equation with Rank-Based Data</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>In this paper, we study reflected backward stochastic differential equation (reflected BSDE) with rank-based data in a Markovian framework; that is, the solution to the reflected BSDE is above a prescribed boundary process in a minimal fashion and the generator and terminal value of the reflected BSDE depend on the solution of another stochastic differential equation (SDE) with rank-based drift and diffusion coefficients. We derive regularity properties of the solution to such reflected BSDE and show that the solution at the initial starting time t and position x , which is a deterministic function, is the unique viscosity solution to some obstacle problem (or variational inequality) for the corresponding parabolic partial differential equation.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYh4MoOKdfwFPBc_RNmjTJ0f3RCQNh6jmkaeK61XZLMobf3moFb57ey_P8XngQuiZwSwDEXSSguMJAAQMBWmB1gkaEC4oVzeEUjUAqhpVkcI4uYtwAgFIAI7RYOd84m1yVTYzdHk2ospfU2bWJqbbZrPbeBdem2jTZfH8wqe7a7FindbYy7RZPTOzNmUnmEp1500R39XvH6O1h_jpd4OXz49P0foktFZAwc8BtQaqSVtYUzpeSEUaUkJxQ43IBnHgiofBOVVKWhXG8cgWTpKwEYcDyMboZdneh2x9cTHrTHULbv9SUc5aLQgjoKTpQNnQxBuf1LtQfJnxqAvq7mB6K6b6Y_immVS_lgxR7uH134W_6H-sLR1xtPg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Chen, Zhen-Qing</creator><creator>Feng, Xinwei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Reflected Backward Stochastic Differential Equation with Rank-Based Data</title><author>Chen, Zhen-Qing ; Feng, Xinwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4e05c61db2dca6efb84141978512ae37051f1806fe9d88b6ae5de6481bd714043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhen-Qing</creatorcontrib><creatorcontrib>Feng, Xinwei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhen-Qing</au><au>Feng, Xinwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflected Backward Stochastic Differential Equation with Rank-Based Data</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>34</volume><issue>3</issue><spage>1213</spage><epage>1247</epage><pages>1213-1247</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>In this paper, we study reflected backward stochastic differential equation (reflected BSDE) with rank-based data in a Markovian framework; that is, the solution to the reflected BSDE is above a prescribed boundary process in a minimal fashion and the generator and terminal value of the reflected BSDE depend on the solution of another stochastic differential equation (SDE) with rank-based drift and diffusion coefficients. We derive regularity properties of the solution to such reflected BSDE and show that the solution at the initial starting time t and position x , which is a deterministic function, is the unique viscosity solution to some obstacle problem (or variational inequality) for the corresponding parabolic partial differential equation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-020-01026-9</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-9840
ispartof Journal of theoretical probability, 2021-09, Vol.34 (3), p.1213-1247
issn 0894-9840
1572-9230
language eng
recordid cdi_proquest_journals_2554376770
source SpringerNature Journals
subjects Mathematics
Mathematics and Statistics
Parabolic differential equations
Partial differential equations
Probability Theory and Stochastic Processes
Statistics
title Reflected Backward Stochastic Differential Equation with Rank-Based Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflected%20Backward%20Stochastic%20Differential%20Equation%20with%20Rank-Based%20Data&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Chen,%20Zhen-Qing&rft.date=2021-09-01&rft.volume=34&rft.issue=3&rft.spage=1213&rft.epage=1247&rft.pages=1213-1247&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-020-01026-9&rft_dat=%3Cproquest_cross%3E2554376770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554376770&rft_id=info:pmid/&rfr_iscdi=true