Sample Path Properties of Generalized Random Sheets with Operator Scaling
We consider operator scaling α -stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling α -stable random fi...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2021-09, Vol.34 (3), p.1279-1298 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1298 |
---|---|
container_issue | 3 |
container_start_page | 1279 |
container_title | Journal of theoretical probability |
container_volume | 34 |
creator | Sönmez, Ercan |
description | We consider operator scaling
α
-stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling
α
-stable random fields introduced in Biermé et al. (Stoch Proc Appl 117(3):312–332, 2007) and fractional Brownian sheets introduced in Kamont (Probab Math Stat 16:85–98, 1996). We establish a general uniform modulus of continuity of such fields in terms of the polar coordinates introduced in Biermé et al. (2007). Based on this, we determine the box-counting dimension and the Hausdorff dimension of the graph of a trajectory over a non-degenerate cube
I
⊂
R
d
. |
doi_str_mv | 10.1007/s10959-020-01045-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554376335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554376335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-1d6d258650791251ecabf44e8410901dddf238727952db3fc91a83db3ef73aca3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzX0n2KEVrodBi9bxss5M2pU3iboror3c1gjdPM4fnfYd5CLnmcMsB8rvIwWjDQAADDkqz7ISMuM4FM0LCKRlBYRQzhYJzchHjDgCMARiR2coduj3Speu3dBnaDkNfY6RtRafYYHD7-hM9fXaNbw90tUXsI32vE7xIqOvbQFdlgprNJTmr3D7i1e8ck9fHh5fJE5svprPJ_ZyVkquecZ95oYtMQ2640BxLt66UwkKlF4B77yshi1zkRgu_llVpuCtk2rDKpSudHJObobcL7dsRY2937TE06aQVWiuZZ1LqRImBKkMbY8DKdqE-uPBhOdhvZXZQZpMy-6PMZikkh1BMcLPB8Ff9T-oL5YRt7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554376335</pqid></control><display><type>article</type><title>Sample Path Properties of Generalized Random Sheets with Operator Scaling</title><source>Springer Nature - Complete Springer Journals</source><creator>Sönmez, Ercan</creator><creatorcontrib>Sönmez, Ercan</creatorcontrib><description>We consider operator scaling
α
-stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling
α
-stable random fields introduced in Biermé et al. (Stoch Proc Appl 117(3):312–332, 2007) and fractional Brownian sheets introduced in Kamont (Probab Math Stat 16:85–98, 1996). We establish a general uniform modulus of continuity of such fields in terms of the polar coordinates introduced in Biermé et al. (2007). Based on this, we determine the box-counting dimension and the Hausdorff dimension of the graph of a trajectory over a non-degenerate cube
I
⊂
R
d
.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-020-01045-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Binary mixtures ; Fields (mathematics) ; Mathematics ; Mathematics and Statistics ; Polar coordinates ; Probability Theory and Stochastic Processes ; Scaling ; Sheets ; Statistics</subject><ispartof>Journal of theoretical probability, 2021-09, Vol.34 (3), p.1279-1298</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-1d6d258650791251ecabf44e8410901dddf238727952db3fc91a83db3ef73aca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-020-01045-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-020-01045-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sönmez, Ercan</creatorcontrib><title>Sample Path Properties of Generalized Random Sheets with Operator Scaling</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>We consider operator scaling
α
-stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling
α
-stable random fields introduced in Biermé et al. (Stoch Proc Appl 117(3):312–332, 2007) and fractional Brownian sheets introduced in Kamont (Probab Math Stat 16:85–98, 1996). We establish a general uniform modulus of continuity of such fields in terms of the polar coordinates introduced in Biermé et al. (2007). Based on this, we determine the box-counting dimension and the Hausdorff dimension of the graph of a trajectory over a non-degenerate cube
I
⊂
R
d
.</description><subject>Binary mixtures</subject><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polar coordinates</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Scaling</subject><subject>Sheets</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzX0n2KEVrodBi9bxss5M2pU3iboror3c1gjdPM4fnfYd5CLnmcMsB8rvIwWjDQAADDkqz7ISMuM4FM0LCKRlBYRQzhYJzchHjDgCMARiR2coduj3Speu3dBnaDkNfY6RtRafYYHD7-hM9fXaNbw90tUXsI32vE7xIqOvbQFdlgprNJTmr3D7i1e8ck9fHh5fJE5svprPJ_ZyVkquecZ95oYtMQ2640BxLt66UwkKlF4B77yshi1zkRgu_llVpuCtk2rDKpSudHJObobcL7dsRY2937TE06aQVWiuZZ1LqRImBKkMbY8DKdqE-uPBhOdhvZXZQZpMy-6PMZikkh1BMcLPB8Ff9T-oL5YRt7w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sönmez, Ercan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Sample Path Properties of Generalized Random Sheets with Operator Scaling</title><author>Sönmez, Ercan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-1d6d258650791251ecabf44e8410901dddf238727952db3fc91a83db3ef73aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary mixtures</topic><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polar coordinates</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Scaling</topic><topic>Sheets</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sönmez, Ercan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sönmez, Ercan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample Path Properties of Generalized Random Sheets with Operator Scaling</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>34</volume><issue>3</issue><spage>1279</spage><epage>1298</epage><pages>1279-1298</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>We consider operator scaling
α
-stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling
α
-stable random fields introduced in Biermé et al. (Stoch Proc Appl 117(3):312–332, 2007) and fractional Brownian sheets introduced in Kamont (Probab Math Stat 16:85–98, 1996). We establish a general uniform modulus of continuity of such fields in terms of the polar coordinates introduced in Biermé et al. (2007). Based on this, we determine the box-counting dimension and the Hausdorff dimension of the graph of a trajectory over a non-degenerate cube
I
⊂
R
d
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-020-01045-6</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-9840 |
ispartof | Journal of theoretical probability, 2021-09, Vol.34 (3), p.1279-1298 |
issn | 0894-9840 1572-9230 |
language | eng |
recordid | cdi_proquest_journals_2554376335 |
source | Springer Nature - Complete Springer Journals |
subjects | Binary mixtures Fields (mathematics) Mathematics Mathematics and Statistics Polar coordinates Probability Theory and Stochastic Processes Scaling Sheets Statistics |
title | Sample Path Properties of Generalized Random Sheets with Operator Scaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20Path%20Properties%20of%20Generalized%20Random%20Sheets%20with%20Operator%20Scaling&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=S%C3%B6nmez,%20Ercan&rft.date=2021-09-01&rft.volume=34&rft.issue=3&rft.spage=1279&rft.epage=1298&rft.pages=1279-1298&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-020-01045-6&rft_dat=%3Cproquest_cross%3E2554376335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554376335&rft_id=info:pmid/&rfr_iscdi=true |