Sample Path Properties of Generalized Random Sheets with Operator Scaling

We consider operator scaling α -stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling α -stable random fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2021-09, Vol.34 (3), p.1279-1298
1. Verfasser: Sönmez, Ercan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1298
container_issue 3
container_start_page 1279
container_title Journal of theoretical probability
container_volume 34
creator Sönmez, Ercan
description We consider operator scaling α -stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling α -stable random fields introduced in Biermé et al. (Stoch Proc Appl 117(3):312–332, 2007) and fractional Brownian sheets introduced in Kamont (Probab Math Stat 16:85–98, 1996). We establish a general uniform modulus of continuity of such fields in terms of the polar coordinates introduced in Biermé et al. (2007). Based on this, we determine the box-counting dimension and the Hausdorff dimension of the graph of a trajectory over a non-degenerate cube I ⊂ R d .
doi_str_mv 10.1007/s10959-020-01045-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554376335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554376335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-1d6d258650791251ecabf44e8410901dddf238727952db3fc91a83db3ef73aca3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzX0n2KEVrodBi9bxss5M2pU3iboror3c1gjdPM4fnfYd5CLnmcMsB8rvIwWjDQAADDkqz7ISMuM4FM0LCKRlBYRQzhYJzchHjDgCMARiR2coduj3Speu3dBnaDkNfY6RtRafYYHD7-hM9fXaNbw90tUXsI32vE7xIqOvbQFdlgprNJTmr3D7i1e8ck9fHh5fJE5svprPJ_ZyVkquecZ95oYtMQ2640BxLt66UwkKlF4B77yshi1zkRgu_llVpuCtk2rDKpSudHJObobcL7dsRY2937TE06aQVWiuZZ1LqRImBKkMbY8DKdqE-uPBhOdhvZXZQZpMy-6PMZikkh1BMcLPB8Ff9T-oL5YRt7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554376335</pqid></control><display><type>article</type><title>Sample Path Properties of Generalized Random Sheets with Operator Scaling</title><source>Springer Nature - Complete Springer Journals</source><creator>Sönmez, Ercan</creator><creatorcontrib>Sönmez, Ercan</creatorcontrib><description>We consider operator scaling α -stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling α -stable random fields introduced in Biermé et al. (Stoch Proc Appl 117(3):312–332, 2007) and fractional Brownian sheets introduced in Kamont (Probab Math Stat 16:85–98, 1996). We establish a general uniform modulus of continuity of such fields in terms of the polar coordinates introduced in Biermé et al. (2007). Based on this, we determine the box-counting dimension and the Hausdorff dimension of the graph of a trajectory over a non-degenerate cube I ⊂ R d .</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-020-01045-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Binary mixtures ; Fields (mathematics) ; Mathematics ; Mathematics and Statistics ; Polar coordinates ; Probability Theory and Stochastic Processes ; Scaling ; Sheets ; Statistics</subject><ispartof>Journal of theoretical probability, 2021-09, Vol.34 (3), p.1279-1298</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-1d6d258650791251ecabf44e8410901dddf238727952db3fc91a83db3ef73aca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-020-01045-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-020-01045-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sönmez, Ercan</creatorcontrib><title>Sample Path Properties of Generalized Random Sheets with Operator Scaling</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>We consider operator scaling α -stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling α -stable random fields introduced in Biermé et al. (Stoch Proc Appl 117(3):312–332, 2007) and fractional Brownian sheets introduced in Kamont (Probab Math Stat 16:85–98, 1996). We establish a general uniform modulus of continuity of such fields in terms of the polar coordinates introduced in Biermé et al. (2007). Based on this, we determine the box-counting dimension and the Hausdorff dimension of the graph of a trajectory over a non-degenerate cube I ⊂ R d .</description><subject>Binary mixtures</subject><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polar coordinates</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Scaling</subject><subject>Sheets</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6uzX0n2KEVrodBi9bxss5M2pU3iboror3c1gjdPM4fnfYd5CLnmcMsB8rvIwWjDQAADDkqz7ISMuM4FM0LCKRlBYRQzhYJzchHjDgCMARiR2coduj3Speu3dBnaDkNfY6RtRafYYHD7-hM9fXaNbw90tUXsI32vE7xIqOvbQFdlgprNJTmr3D7i1e8ck9fHh5fJE5svprPJ_ZyVkquecZ95oYtMQ2640BxLt66UwkKlF4B77yshi1zkRgu_llVpuCtk2rDKpSudHJObobcL7dsRY2937TE06aQVWiuZZ1LqRImBKkMbY8DKdqE-uPBhOdhvZXZQZpMy-6PMZikkh1BMcLPB8Ff9T-oL5YRt7w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sönmez, Ercan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Sample Path Properties of Generalized Random Sheets with Operator Scaling</title><author>Sönmez, Ercan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-1d6d258650791251ecabf44e8410901dddf238727952db3fc91a83db3ef73aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary mixtures</topic><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polar coordinates</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Scaling</topic><topic>Sheets</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sönmez, Ercan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sönmez, Ercan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample Path Properties of Generalized Random Sheets with Operator Scaling</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>34</volume><issue>3</issue><spage>1279</spage><epage>1298</epage><pages>1279-1298</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>We consider operator scaling α -stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling α -stable random fields introduced in Biermé et al. (Stoch Proc Appl 117(3):312–332, 2007) and fractional Brownian sheets introduced in Kamont (Probab Math Stat 16:85–98, 1996). We establish a general uniform modulus of continuity of such fields in terms of the polar coordinates introduced in Biermé et al. (2007). Based on this, we determine the box-counting dimension and the Hausdorff dimension of the graph of a trajectory over a non-degenerate cube I ⊂ R d .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-020-01045-6</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-9840
ispartof Journal of theoretical probability, 2021-09, Vol.34 (3), p.1279-1298
issn 0894-9840
1572-9230
language eng
recordid cdi_proquest_journals_2554376335
source Springer Nature - Complete Springer Journals
subjects Binary mixtures
Fields (mathematics)
Mathematics
Mathematics and Statistics
Polar coordinates
Probability Theory and Stochastic Processes
Scaling
Sheets
Statistics
title Sample Path Properties of Generalized Random Sheets with Operator Scaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20Path%20Properties%20of%20Generalized%20Random%20Sheets%20with%20Operator%20Scaling&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=S%C3%B6nmez,%20Ercan&rft.date=2021-09-01&rft.volume=34&rft.issue=3&rft.spage=1279&rft.epage=1298&rft.pages=1279-1298&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-020-01045-6&rft_dat=%3Cproquest_cross%3E2554376335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554376335&rft_id=info:pmid/&rfr_iscdi=true