Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development

Reactive oxygen species (ROS) generated at low levels during mitochondrial respiration have key roles in several signaling pathways. Oxidative stress (OS) arises when the generation of ROS exceeds the cell’s antioxidant scavenging ability and leads to cell damage. Physiological ROS production in spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2021-06, Vol.10 (7), p.1025
Hauptverfasser: Gualtieri, Roberto, Kalthur, Guruprasad, Barbato, Vincenza, Longobardi, Salvatore, Di Rella, Francesca, Adiga, Satish Kumar, Talevi, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1025
container_title Antioxidants
container_volume 10
creator Gualtieri, Roberto
Kalthur, Guruprasad
Barbato, Vincenza
Longobardi, Salvatore
Di Rella, Francesca
Adiga, Satish Kumar
Talevi, Riccardo
description Reactive oxygen species (ROS) generated at low levels during mitochondrial respiration have key roles in several signaling pathways. Oxidative stress (OS) arises when the generation of ROS exceeds the cell’s antioxidant scavenging ability and leads to cell damage. Physiological ROS production in spermatozoa regulates essential functional characteristics such as motility, capacitation, acrosome reaction, hyperactivation, and sperm-oocyte fusion. OS can have detrimental effects on sperm function through lipid peroxidation, protein damage, and DNA strand breakage, which can eventually affect the fertility of an individual. Substantial evidence in the literature indicates that spermatozoa experiencing OS during in vitro manipulation procedures in human- and animal-assisted reproduction are increasingly associated with iatrogenic ROS production and eventual impairment of sperm function. Although a direct association between sperm OS and human assisted reproductive techniques (ART) outcomes after in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) is still a matter of debate, studies in animal models provide enough evidence on the adverse effects of sperm OS in vitro and defective fertilization and embryo development. This review summarized the literature on sperm OS in vitro, its effects on functional ability and embryo development, and the approaches that have been proposed to reduce iatrogenic sperm damage and altered embryonic development.
doi_str_mv 10.3390/antiox10071025
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2554372843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b16581a4b48347e59705421a8f48c56e</doaj_id><sourcerecordid>2554372843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-2be8b04622dac9c305b46c269e4e273f2153ff2fe887e37d673ec1a35b3b75a43</originalsourceid><addsrcrecordid>eNpdkktv1DAQgC0EolXplbMlLly2-G3ngoTKtqxU1EOBq-U4k8WrxA52smr_fQ1bVWx9GWvm0-fHDELvKbngvCGfXJxDuqeEaEqYfIVOGdFqxRtGX_-3P0HnpexIXQ3lhjRv0QkXjDDK1Cka7ibII769D52bwx7w3ZyhFNwtOcQt3kT8K8w54e8uhmkZKpMidrHDm7ngdd-Dr7GmDpqrJfpnYj22-SHhr7CHIU0jxPkdetO7ocD5UzxDP6_WPy6_rW5urzeXX25WXig6r1gLpiVCMdY533hOZCuUZ6oBAUzznlHJ-571YIwGrjulOXjquGx5q6UT_AxtDt4uuZ2dchhdfrDJBfsvkfLWujwHP4BtqZKGOtEKw4UG2WgiBaPO9MJ4qaC6Ph9c09KO0Pn6jOyGI-lxJYbfdpv21vDaF0Or4OOTIKc_C5TZjqF4GAYXIS3FMimMqIcSVdEPL9BdWnKsX1UpKbhmRvBKXRwon1MpGfrny1Bi_86FPZ4L_gi7gapp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554372843</pqid></control><display><type>article</type><title>Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development</title><source>PubMed Central (Open Access)</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Gualtieri, Roberto ; Kalthur, Guruprasad ; Barbato, Vincenza ; Longobardi, Salvatore ; Di Rella, Francesca ; Adiga, Satish Kumar ; Talevi, Riccardo</creator><creatorcontrib>Gualtieri, Roberto ; Kalthur, Guruprasad ; Barbato, Vincenza ; Longobardi, Salvatore ; Di Rella, Francesca ; Adiga, Satish Kumar ; Talevi, Riccardo</creatorcontrib><description>Reactive oxygen species (ROS) generated at low levels during mitochondrial respiration have key roles in several signaling pathways. Oxidative stress (OS) arises when the generation of ROS exceeds the cell’s antioxidant scavenging ability and leads to cell damage. Physiological ROS production in spermatozoa regulates essential functional characteristics such as motility, capacitation, acrosome reaction, hyperactivation, and sperm-oocyte fusion. OS can have detrimental effects on sperm function through lipid peroxidation, protein damage, and DNA strand breakage, which can eventually affect the fertility of an individual. Substantial evidence in the literature indicates that spermatozoa experiencing OS during in vitro manipulation procedures in human- and animal-assisted reproduction are increasingly associated with iatrogenic ROS production and eventual impairment of sperm function. Although a direct association between sperm OS and human assisted reproductive techniques (ART) outcomes after in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) is still a matter of debate, studies in animal models provide enough evidence on the adverse effects of sperm OS in vitro and defective fertilization and embryo development. This review summarized the literature on sperm OS in vitro, its effects on functional ability and embryo development, and the approaches that have been proposed to reduce iatrogenic sperm damage and altered embryonic development.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox10071025</identifier><identifier>PMID: 34202126</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acrosome reaction ; Animal models ; Antioxidants ; assisted reproductive technologies ; Capacitation ; DNA damage ; DNA repair ; embryo development ; Embryogenesis ; Enzymes ; Fatty acids ; Fertility ; In vitro fertilization ; Infertility ; Kinases ; Lipid peroxidation ; Lipids ; male infertility ; Mitochondria ; Motility ; Nitric oxide ; Oxidative stress ; Phosphorylation ; Physiology ; Proteins ; Reactive oxygen species ; Reproduction ; Review ; Sperm ; spermatozoa</subject><ispartof>Antioxidants, 2021-06, Vol.10 (7), p.1025</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-2be8b04622dac9c305b46c269e4e273f2153ff2fe887e37d673ec1a35b3b75a43</citedby><cites>FETCH-LOGICAL-c461t-2be8b04622dac9c305b46c269e4e273f2153ff2fe887e37d673ec1a35b3b75a43</cites><orcidid>0000-0002-0424-5254 ; 0000-0002-4554-2917 ; 0000-0003-3271-4828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300781/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300781/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,27926,27927,53793,53795</link.rule.ids></links><search><creatorcontrib>Gualtieri, Roberto</creatorcontrib><creatorcontrib>Kalthur, Guruprasad</creatorcontrib><creatorcontrib>Barbato, Vincenza</creatorcontrib><creatorcontrib>Longobardi, Salvatore</creatorcontrib><creatorcontrib>Di Rella, Francesca</creatorcontrib><creatorcontrib>Adiga, Satish Kumar</creatorcontrib><creatorcontrib>Talevi, Riccardo</creatorcontrib><title>Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development</title><title>Antioxidants</title><description>Reactive oxygen species (ROS) generated at low levels during mitochondrial respiration have key roles in several signaling pathways. Oxidative stress (OS) arises when the generation of ROS exceeds the cell’s antioxidant scavenging ability and leads to cell damage. Physiological ROS production in spermatozoa regulates essential functional characteristics such as motility, capacitation, acrosome reaction, hyperactivation, and sperm-oocyte fusion. OS can have detrimental effects on sperm function through lipid peroxidation, protein damage, and DNA strand breakage, which can eventually affect the fertility of an individual. Substantial evidence in the literature indicates that spermatozoa experiencing OS during in vitro manipulation procedures in human- and animal-assisted reproduction are increasingly associated with iatrogenic ROS production and eventual impairment of sperm function. Although a direct association between sperm OS and human assisted reproductive techniques (ART) outcomes after in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) is still a matter of debate, studies in animal models provide enough evidence on the adverse effects of sperm OS in vitro and defective fertilization and embryo development. This review summarized the literature on sperm OS in vitro, its effects on functional ability and embryo development, and the approaches that have been proposed to reduce iatrogenic sperm damage and altered embryonic development.</description><subject>Acrosome reaction</subject><subject>Animal models</subject><subject>Antioxidants</subject><subject>assisted reproductive technologies</subject><subject>Capacitation</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>embryo development</subject><subject>Embryogenesis</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fertility</subject><subject>In vitro fertilization</subject><subject>Infertility</subject><subject>Kinases</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>male infertility</subject><subject>Mitochondria</subject><subject>Motility</subject><subject>Nitric oxide</subject><subject>Oxidative stress</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reproduction</subject><subject>Review</subject><subject>Sperm</subject><subject>spermatozoa</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAQgC0EolXplbMlLly2-G3ngoTKtqxU1EOBq-U4k8WrxA52smr_fQ1bVWx9GWvm0-fHDELvKbngvCGfXJxDuqeEaEqYfIVOGdFqxRtGX_-3P0HnpexIXQ3lhjRv0QkXjDDK1Cka7ibII769D52bwx7w3ZyhFNwtOcQt3kT8K8w54e8uhmkZKpMidrHDm7ngdd-Dr7GmDpqrJfpnYj22-SHhr7CHIU0jxPkdetO7ocD5UzxDP6_WPy6_rW5urzeXX25WXig6r1gLpiVCMdY533hOZCuUZ6oBAUzznlHJ-571YIwGrjulOXjquGx5q6UT_AxtDt4uuZ2dchhdfrDJBfsvkfLWujwHP4BtqZKGOtEKw4UG2WgiBaPO9MJ4qaC6Ph9c09KO0Pn6jOyGI-lxJYbfdpv21vDaF0Or4OOTIKc_C5TZjqF4GAYXIS3FMimMqIcSVdEPL9BdWnKsX1UpKbhmRvBKXRwon1MpGfrny1Bi_86FPZ4L_gi7gapp</recordid><startdate>20210625</startdate><enddate>20210625</enddate><creator>Gualtieri, Roberto</creator><creator>Kalthur, Guruprasad</creator><creator>Barbato, Vincenza</creator><creator>Longobardi, Salvatore</creator><creator>Di Rella, Francesca</creator><creator>Adiga, Satish Kumar</creator><creator>Talevi, Riccardo</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0424-5254</orcidid><orcidid>https://orcid.org/0000-0002-4554-2917</orcidid><orcidid>https://orcid.org/0000-0003-3271-4828</orcidid></search><sort><creationdate>20210625</creationdate><title>Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development</title><author>Gualtieri, Roberto ; Kalthur, Guruprasad ; Barbato, Vincenza ; Longobardi, Salvatore ; Di Rella, Francesca ; Adiga, Satish Kumar ; Talevi, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-2be8b04622dac9c305b46c269e4e273f2153ff2fe887e37d673ec1a35b3b75a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acrosome reaction</topic><topic>Animal models</topic><topic>Antioxidants</topic><topic>assisted reproductive technologies</topic><topic>Capacitation</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>embryo development</topic><topic>Embryogenesis</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fertility</topic><topic>In vitro fertilization</topic><topic>Infertility</topic><topic>Kinases</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>male infertility</topic><topic>Mitochondria</topic><topic>Motility</topic><topic>Nitric oxide</topic><topic>Oxidative stress</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reproduction</topic><topic>Review</topic><topic>Sperm</topic><topic>spermatozoa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gualtieri, Roberto</creatorcontrib><creatorcontrib>Kalthur, Guruprasad</creatorcontrib><creatorcontrib>Barbato, Vincenza</creatorcontrib><creatorcontrib>Longobardi, Salvatore</creatorcontrib><creatorcontrib>Di Rella, Francesca</creatorcontrib><creatorcontrib>Adiga, Satish Kumar</creatorcontrib><creatorcontrib>Talevi, Riccardo</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gualtieri, Roberto</au><au>Kalthur, Guruprasad</au><au>Barbato, Vincenza</au><au>Longobardi, Salvatore</au><au>Di Rella, Francesca</au><au>Adiga, Satish Kumar</au><au>Talevi, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development</atitle><jtitle>Antioxidants</jtitle><date>2021-06-25</date><risdate>2021</risdate><volume>10</volume><issue>7</issue><spage>1025</spage><pages>1025-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>Reactive oxygen species (ROS) generated at low levels during mitochondrial respiration have key roles in several signaling pathways. Oxidative stress (OS) arises when the generation of ROS exceeds the cell’s antioxidant scavenging ability and leads to cell damage. Physiological ROS production in spermatozoa regulates essential functional characteristics such as motility, capacitation, acrosome reaction, hyperactivation, and sperm-oocyte fusion. OS can have detrimental effects on sperm function through lipid peroxidation, protein damage, and DNA strand breakage, which can eventually affect the fertility of an individual. Substantial evidence in the literature indicates that spermatozoa experiencing OS during in vitro manipulation procedures in human- and animal-assisted reproduction are increasingly associated with iatrogenic ROS production and eventual impairment of sperm function. Although a direct association between sperm OS and human assisted reproductive techniques (ART) outcomes after in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) is still a matter of debate, studies in animal models provide enough evidence on the adverse effects of sperm OS in vitro and defective fertilization and embryo development. This review summarized the literature on sperm OS in vitro, its effects on functional ability and embryo development, and the approaches that have been proposed to reduce iatrogenic sperm damage and altered embryonic development.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34202126</pmid><doi>10.3390/antiox10071025</doi><orcidid>https://orcid.org/0000-0002-0424-5254</orcidid><orcidid>https://orcid.org/0000-0002-4554-2917</orcidid><orcidid>https://orcid.org/0000-0003-3271-4828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3921
ispartof Antioxidants, 2021-06, Vol.10 (7), p.1025
issn 2076-3921
2076-3921
language eng
recordid cdi_proquest_journals_2554372843
source PubMed Central (Open Access); MDPI - Multidisciplinary Digital Publishing Institute; Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access
subjects Acrosome reaction
Animal models
Antioxidants
assisted reproductive technologies
Capacitation
DNA damage
DNA repair
embryo development
Embryogenesis
Enzymes
Fatty acids
Fertility
In vitro fertilization
Infertility
Kinases
Lipid peroxidation
Lipids
male infertility
Mitochondria
Motility
Nitric oxide
Oxidative stress
Phosphorylation
Physiology
Proteins
Reactive oxygen species
Reproduction
Review
Sperm
spermatozoa
title Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sperm%20Oxidative%20Stress%20during%20In%20Vitro%20Manipulation%20and%20Its%20Effects%20on%20Sperm%20Function%20and%20Embryo%20Development&rft.jtitle=Antioxidants&rft.au=Gualtieri,%20Roberto&rft.date=2021-06-25&rft.volume=10&rft.issue=7&rft.spage=1025&rft.pages=1025-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox10071025&rft_dat=%3Cproquest_doaj_%3E2554372843%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554372843&rft_id=info:pmid/34202126&rft_doaj_id=oai_doaj_org_article_b16581a4b48347e59705421a8f48c56e&rfr_iscdi=true