Combination Strategies for Semantic Role Labeling
This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich s...
Gespeichert in:
Veröffentlicht in: | The Journal of artificial intelligence research 2007-01, Vol.29, p.105-151 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | |
container_start_page | 105 |
container_title | The Journal of artificial intelligence research |
container_volume | 29 |
creator | Surdeanu, M. Marquez, L. Carreras, X. Comas, P. R. |
description | This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback. |
doi_str_mv | 10.1613/jair.2088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554119943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554119943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-e1437d70f9acbdb663d847cb501e88f20b7dc0235d3780c1ce86e2320c9180fd3</originalsourceid><addsrcrecordid>eNpNkE1LxDAURYMoOI4u_AcFVy46vpe0TbqU4hcUBEfXIUmTIaVtxqSz8N87ZVy4undxuBcOIbcIG6yQPfTKxw0FIc7ICoFXec1Lfv6vX5KrlHoArAsqVgSbMGo_qdmHKdvOUc12523KXIjZ1o5qmr3JPsJgs1ZpO_hpd00unBqSvfnLNfl6fvpsXvP2_eWteWxzwyibc4sF4x0HVyujO11VrBMFN7oEtEI4Cpp3BigrO8YFGDRWVJYyCqZGAa5ja3J32t3H8H2waZZ9OMTpeClpWRaIdV2wI3V_okwMKUXr5D76UcUfiSAXI3IxIhcj7BctwlKi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554119943</pqid></control><display><type>article</type><title>Combination Strategies for Semantic Role Labeling</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Surdeanu, M. ; Marquez, L. ; Carreras, X. ; Comas, P. R.</creator><creatorcontrib>Surdeanu, M. ; Marquez, L. ; Carreras, X. ; Comas, P. R.</creatorcontrib><description>This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.2088</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Artificial intelligence ; Classifiers ; Constraint modelling ; Evaluation ; Inference ; Labeling ; Learning ; Semantics</subject><ispartof>The Journal of artificial intelligence research, 2007-01, Vol.29, p.105-151</ispartof><rights>2007. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-e1437d70f9acbdb663d847cb501e88f20b7dc0235d3780c1ce86e2320c9180fd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Surdeanu, M.</creatorcontrib><creatorcontrib>Marquez, L.</creatorcontrib><creatorcontrib>Carreras, X.</creatorcontrib><creatorcontrib>Comas, P. R.</creatorcontrib><title>Combination Strategies for Semantic Role Labeling</title><title>The Journal of artificial intelligence research</title><description>This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback.</description><subject>Artificial intelligence</subject><subject>Classifiers</subject><subject>Constraint modelling</subject><subject>Evaluation</subject><subject>Inference</subject><subject>Labeling</subject><subject>Learning</subject><subject>Semantics</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1LxDAURYMoOI4u_AcFVy46vpe0TbqU4hcUBEfXIUmTIaVtxqSz8N87ZVy4undxuBcOIbcIG6yQPfTKxw0FIc7ICoFXec1Lfv6vX5KrlHoArAsqVgSbMGo_qdmHKdvOUc12523KXIjZ1o5qmr3JPsJgs1ZpO_hpd00unBqSvfnLNfl6fvpsXvP2_eWteWxzwyibc4sF4x0HVyujO11VrBMFN7oEtEI4Cpp3BigrO8YFGDRWVJYyCqZGAa5ja3J32t3H8H2waZZ9OMTpeClpWRaIdV2wI3V_okwMKUXr5D76UcUfiSAXI3IxIhcj7BctwlKi</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Surdeanu, M.</creator><creator>Marquez, L.</creator><creator>Carreras, X.</creator><creator>Comas, P. R.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20070101</creationdate><title>Combination Strategies for Semantic Role Labeling</title><author>Surdeanu, M. ; Marquez, L. ; Carreras, X. ; Comas, P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-e1437d70f9acbdb663d847cb501e88f20b7dc0235d3780c1ce86e2320c9180fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Artificial intelligence</topic><topic>Classifiers</topic><topic>Constraint modelling</topic><topic>Evaluation</topic><topic>Inference</topic><topic>Labeling</topic><topic>Learning</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surdeanu, M.</creatorcontrib><creatorcontrib>Marquez, L.</creatorcontrib><creatorcontrib>Carreras, X.</creatorcontrib><creatorcontrib>Comas, P. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surdeanu, M.</au><au>Marquez, L.</au><au>Carreras, X.</au><au>Comas, P. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination Strategies for Semantic Role Labeling</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>29</volume><spage>105</spage><epage>151</epage><pages>105-151</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.2088</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2007-01, Vol.29, p.105-151 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554119943 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals |
subjects | Artificial intelligence Classifiers Constraint modelling Evaluation Inference Labeling Learning Semantics |
title | Combination Strategies for Semantic Role Labeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T09%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20Strategies%20for%20Semantic%20Role%20Labeling&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Surdeanu,%20M.&rft.date=2007-01-01&rft.volume=29&rft.spage=105&rft.epage=151&rft.pages=105-151&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.2088&rft_dat=%3Cproquest_cross%3E2554119943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554119943&rft_id=info:pmid/&rfr_iscdi=true |