Relaxed Survey Propagation for The Weighted Maximum Satisfiability Problem
The survey propagation (SP) algorithm has been shown to work well on large instances of the random 3-SAT problem near its phase transition. It was shown that SP estimates marginals over covers that represent clusters of solutions. The SP-y algorithm generalizes SP to work on the maximum satisfiabili...
Gespeichert in:
Veröffentlicht in: | The Journal of artificial intelligence research 2009-01, Vol.36, p.229-266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | |
container_start_page | 229 |
container_title | The Journal of artificial intelligence research |
container_volume | 36 |
creator | Chieu, H.L. Lee, W.S. |
description | The survey propagation (SP) algorithm has been shown to work well on large instances of the random 3-SAT problem near its phase transition. It was shown that SP estimates marginals over covers that represent clusters of solutions. The SP-y algorithm generalizes SP to work on the maximum satisfiability (Max-SAT) problem, but the cover interpretation of SP does not generalize to SP-y. In this paper, we formulate the relaxed survey propagation (RSP) algorithm, which extends the SP algorithm to apply to the weighted Max-SAT problem. We show that RSP has an interpretation of estimating marginals over covers violating a set of clauses with minimal weight. This naturally generalizes the cover interpretation of SP. Empirically, we show that RSP outperforms SP-y and other state-of-the-art Max-SAT solvers on random Max-SAT instances. RSP also outperforms state-of-the-art weighted Max-SAT solvers on random weighted Max-SAT instances. |
doi_str_mv | 10.1613/jair.2808 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554113829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554113829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-e6c6a6ac23d8df56222e9c5f1160ff475ae6fc245b5fb2f8e0c312eb7c7828013</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqWw4A8isWKRYjvxI0tU8VQRiBaxtBxn3DpKmmAnqP17EsqC1Yw0Z2Z0D0KXBM8IJ8lNqZ2fUYnlEZoQLHicCSaO__Wn6CyEEmOSpVRO0PM7VHoHRbTs_TfsozfftHqtO9dsI9v4aLWB6BPcetMNzIveubqvo-UwD9bp3FWu-93JK6jP0YnVVYCLvzpFH_d3q_ljvHh9eJrfLmJDmehi4IZrrg1NCllYximlkBlmCeHY2lQwDdwamrKc2ZxaCdgkhEIujJBDMJJM0dXhbuubrx5Cp8qm99vhpaKMpYQkkmYDdX2gjG9C8GBV612t_V4RrEZValSlRlXJD7qfXKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554113829</pqid></control><display><type>article</type><title>Relaxed Survey Propagation for The Weighted Maximum Satisfiability Problem</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Chieu, H.L. ; Lee, W.S.</creator><creatorcontrib>Chieu, H.L. ; Lee, W.S.</creatorcontrib><description>The survey propagation (SP) algorithm has been shown to work well on large instances of the random 3-SAT problem near its phase transition. It was shown that SP estimates marginals over covers that represent clusters of solutions. The SP-y algorithm generalizes SP to work on the maximum satisfiability (Max-SAT) problem, but the cover interpretation of SP does not generalize to SP-y. In this paper, we formulate the relaxed survey propagation (RSP) algorithm, which extends the SP algorithm to apply to the weighted Max-SAT problem. We show that RSP has an interpretation of estimating marginals over covers violating a set of clauses with minimal weight. This naturally generalizes the cover interpretation of SP. Empirically, we show that RSP outperforms SP-y and other state-of-the-art Max-SAT solvers on random Max-SAT instances. RSP also outperforms state-of-the-art weighted Max-SAT solvers on random weighted Max-SAT instances.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.2808</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Algorithms ; Artificial intelligence ; Phase transitions ; Propagation ; Solvers</subject><ispartof>The Journal of artificial intelligence research, 2009-01, Vol.36, p.229-266</ispartof><rights>2009. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-e6c6a6ac23d8df56222e9c5f1160ff475ae6fc245b5fb2f8e0c312eb7c7828013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Chieu, H.L.</creatorcontrib><creatorcontrib>Lee, W.S.</creatorcontrib><title>Relaxed Survey Propagation for The Weighted Maximum Satisfiability Problem</title><title>The Journal of artificial intelligence research</title><description>The survey propagation (SP) algorithm has been shown to work well on large instances of the random 3-SAT problem near its phase transition. It was shown that SP estimates marginals over covers that represent clusters of solutions. The SP-y algorithm generalizes SP to work on the maximum satisfiability (Max-SAT) problem, but the cover interpretation of SP does not generalize to SP-y. In this paper, we formulate the relaxed survey propagation (RSP) algorithm, which extends the SP algorithm to apply to the weighted Max-SAT problem. We show that RSP has an interpretation of estimating marginals over covers violating a set of clauses with minimal weight. This naturally generalizes the cover interpretation of SP. Empirically, we show that RSP outperforms SP-y and other state-of-the-art Max-SAT solvers on random Max-SAT instances. RSP also outperforms state-of-the-art weighted Max-SAT solvers on random weighted Max-SAT instances.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Phase transitions</subject><subject>Propagation</subject><subject>Solvers</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkMtOwzAQRS0EEqWw4A8isWKRYjvxI0tU8VQRiBaxtBxn3DpKmmAnqP17EsqC1Yw0Z2Z0D0KXBM8IJ8lNqZ2fUYnlEZoQLHicCSaO__Wn6CyEEmOSpVRO0PM7VHoHRbTs_TfsozfftHqtO9dsI9v4aLWB6BPcetMNzIveubqvo-UwD9bp3FWu-93JK6jP0YnVVYCLvzpFH_d3q_ljvHh9eJrfLmJDmehi4IZrrg1NCllYximlkBlmCeHY2lQwDdwamrKc2ZxaCdgkhEIujJBDMJJM0dXhbuubrx5Cp8qm99vhpaKMpYQkkmYDdX2gjG9C8GBV612t_V4RrEZValSlRlXJD7qfXKs</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Chieu, H.L.</creator><creator>Lee, W.S.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20090101</creationdate><title>Relaxed Survey Propagation for The Weighted Maximum Satisfiability Problem</title><author>Chieu, H.L. ; Lee, W.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-e6c6a6ac23d8df56222e9c5f1160ff475ae6fc245b5fb2f8e0c312eb7c7828013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Phase transitions</topic><topic>Propagation</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chieu, H.L.</creatorcontrib><creatorcontrib>Lee, W.S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chieu, H.L.</au><au>Lee, W.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxed Survey Propagation for The Weighted Maximum Satisfiability Problem</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>36</volume><spage>229</spage><epage>266</epage><pages>229-266</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>The survey propagation (SP) algorithm has been shown to work well on large instances of the random 3-SAT problem near its phase transition. It was shown that SP estimates marginals over covers that represent clusters of solutions. The SP-y algorithm generalizes SP to work on the maximum satisfiability (Max-SAT) problem, but the cover interpretation of SP does not generalize to SP-y. In this paper, we formulate the relaxed survey propagation (RSP) algorithm, which extends the SP algorithm to apply to the weighted Max-SAT problem. We show that RSP has an interpretation of estimating marginals over covers violating a set of clauses with minimal weight. This naturally generalizes the cover interpretation of SP. Empirically, we show that RSP outperforms SP-y and other state-of-the-art Max-SAT solvers on random Max-SAT instances. RSP also outperforms state-of-the-art weighted Max-SAT solvers on random weighted Max-SAT instances.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.2808</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2009-01, Vol.36, p.229-266 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554113829 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals |
subjects | Algorithms Artificial intelligence Phase transitions Propagation Solvers |
title | Relaxed Survey Propagation for The Weighted Maximum Satisfiability Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxed%20Survey%20Propagation%20for%20The%20Weighted%20Maximum%20Satisfiability%20Problem&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Chieu,%20H.L.&rft.date=2009-01-01&rft.volume=36&rft.spage=229&rft.epage=266&rft.pages=229-266&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.2808&rft_dat=%3Cproquest_cross%3E2554113829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554113829&rft_id=info:pmid/&rfr_iscdi=true |