The Complexity of Integer Bound Propagation
Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (branch and prune) and used at every node of the search tree to narrow down the search space, so it is cri...
Gespeichert in:
Veröffentlicht in: | The Journal of artificial intelligence research 2011-01, Vol.40, p.657-676 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 676 |
---|---|
container_issue | |
container_start_page | 657 |
container_title | The Journal of artificial intelligence research |
container_volume | 40 |
creator | Bordeaux, L. Katsirelos, G. Narodytska, N. Vardi, M. Y. |
description | Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (branch and prune) and used at every node of the search tree to narrow down the search space, so it is critical that it be fast. The procedure invokes constraint propagators until a common fixpoint is reached, but the known algorithms for this have a pseudo-polynomial worst-case time complexity: they are fast indeed when the variables have a small numerical range, but they have the well-known problem of being prohibitively slow when these ranges are large. An important question is therefore whether strongly-polynomial algorithms exist that compute the common bound consistent fixpoint of a set of constraints. This paper answers this question. In particular we show that this fixpoint computation is in fact NP-complete, even when restricted to binary linear constraints. |
doi_str_mv | 10.1613/jair.3248 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554109520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554109520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-8bb54150d88a46779a6963f50da30e130a0313d26814ef0e6e0de3e0de23588e3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFYPfoOAJ5HU2Z3snxy1VC0U9FDPy7aZ1IQ2G3cTsN_ehHrwMm94PN6DH2O3HGZccXysXRVmKDJzxiYctEpzLfX5v_-SXcVYA_A8E2bCHtZflMz9od3TT9UdE18my6ajHYXk2fdNkXwE37qd6yrfXLOL0u0j3fzplH2-LNbzt3T1_rqcP63SrZC6S81mIzMuoTDGZUrr3KlcYTkYDoE4ggPkWAhleEYlkCIoCMcjUBpDOGV3p942-O-eYmdr34dmmLRCDtWQSwFD6v6U2gYfY6DStqE6uHC0HOzIwo4s7MgCfwFvr0-5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554109520</pqid></control><display><type>article</type><title>The Complexity of Integer Bound Propagation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Bordeaux, L. ; Katsirelos, G. ; Narodytska, N. ; Vardi, M. Y.</creator><creatorcontrib>Bordeaux, L. ; Katsirelos, G. ; Narodytska, N. ; Vardi, M. Y.</creatorcontrib><description>Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (branch and prune) and used at every node of the search tree to narrow down the search space, so it is critical that it be fast. The procedure invokes constraint propagators until a common fixpoint is reached, but the known algorithms for this have a pseudo-polynomial worst-case time complexity: they are fast indeed when the variables have a small numerical range, but they have the well-known problem of being prohibitively slow when these ranges are large. An important question is therefore whether strongly-polynomial algorithms exist that compute the common bound consistent fixpoint of a set of constraints. This paper answers this question. In particular we show that this fixpoint computation is in fact NP-complete, even when restricted to binary linear constraints.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.3248</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Algorithms ; Artificial intelligence ; Complexity ; Polynomials ; Propagation ; Questions ; Searching</subject><ispartof>The Journal of artificial intelligence research, 2011-01, Vol.40, p.657-676</ispartof><rights>2011. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-8bb54150d88a46779a6963f50da30e130a0313d26814ef0e6e0de3e0de23588e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Bordeaux, L.</creatorcontrib><creatorcontrib>Katsirelos, G.</creatorcontrib><creatorcontrib>Narodytska, N.</creatorcontrib><creatorcontrib>Vardi, M. Y.</creatorcontrib><title>The Complexity of Integer Bound Propagation</title><title>The Journal of artificial intelligence research</title><description>Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (branch and prune) and used at every node of the search tree to narrow down the search space, so it is critical that it be fast. The procedure invokes constraint propagators until a common fixpoint is reached, but the known algorithms for this have a pseudo-polynomial worst-case time complexity: they are fast indeed when the variables have a small numerical range, but they have the well-known problem of being prohibitively slow when these ranges are large. An important question is therefore whether strongly-polynomial algorithms exist that compute the common bound consistent fixpoint of a set of constraints. This paper answers this question. In particular we show that this fixpoint computation is in fact NP-complete, even when restricted to binary linear constraints.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Complexity</subject><subject>Polynomials</subject><subject>Propagation</subject><subject>Questions</subject><subject>Searching</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE9Lw0AQxRdRsFYPfoOAJ5HU2Z3snxy1VC0U9FDPy7aZ1IQ2G3cTsN_ehHrwMm94PN6DH2O3HGZccXysXRVmKDJzxiYctEpzLfX5v_-SXcVYA_A8E2bCHtZflMz9od3TT9UdE18my6ajHYXk2fdNkXwE37qd6yrfXLOL0u0j3fzplH2-LNbzt3T1_rqcP63SrZC6S81mIzMuoTDGZUrr3KlcYTkYDoE4ggPkWAhleEYlkCIoCMcjUBpDOGV3p942-O-eYmdr34dmmLRCDtWQSwFD6v6U2gYfY6DStqE6uHC0HOzIwo4s7MgCfwFvr0-5</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Bordeaux, L.</creator><creator>Katsirelos, G.</creator><creator>Narodytska, N.</creator><creator>Vardi, M. Y.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110101</creationdate><title>The Complexity of Integer Bound Propagation</title><author>Bordeaux, L. ; Katsirelos, G. ; Narodytska, N. ; Vardi, M. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-8bb54150d88a46779a6963f50da30e130a0313d26814ef0e6e0de3e0de23588e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Complexity</topic><topic>Polynomials</topic><topic>Propagation</topic><topic>Questions</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bordeaux, L.</creatorcontrib><creatorcontrib>Katsirelos, G.</creatorcontrib><creatorcontrib>Narodytska, N.</creatorcontrib><creatorcontrib>Vardi, M. Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bordeaux, L.</au><au>Katsirelos, G.</au><au>Narodytska, N.</au><au>Vardi, M. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Complexity of Integer Bound Propagation</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>40</volume><spage>657</spage><epage>676</epage><pages>657-676</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (branch and prune) and used at every node of the search tree to narrow down the search space, so it is critical that it be fast. The procedure invokes constraint propagators until a common fixpoint is reached, but the known algorithms for this have a pseudo-polynomial worst-case time complexity: they are fast indeed when the variables have a small numerical range, but they have the well-known problem of being prohibitively slow when these ranges are large. An important question is therefore whether strongly-polynomial algorithms exist that compute the common bound consistent fixpoint of a set of constraints. This paper answers this question. In particular we show that this fixpoint computation is in fact NP-complete, even when restricted to binary linear constraints.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.3248</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2011-01, Vol.40, p.657-676 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554109520 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals |
subjects | Algorithms Artificial intelligence Complexity Polynomials Propagation Questions Searching |
title | The Complexity of Integer Bound Propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Complexity%20of%20Integer%20Bound%20Propagation&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Bordeaux,%20L.&rft.date=2011-01-01&rft.volume=40&rft.spage=657&rft.epage=676&rft.pages=657-676&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.3248&rft_dat=%3Cproquest_cross%3E2554109520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554109520&rft_id=info:pmid/&rfr_iscdi=true |