The Complexity of Integer Bound Propagation

Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (”branch and prune”) and used at every node of the search tree to narrow down the search space, so it is cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of artificial intelligence research 2011-01, Vol.40, p.657-676
Hauptverfasser: Bordeaux, L., Katsirelos, G., Narodytska, N., Vardi, M. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 676
container_issue
container_start_page 657
container_title The Journal of artificial intelligence research
container_volume 40
creator Bordeaux, L.
Katsirelos, G.
Narodytska, N.
Vardi, M. Y.
description Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (”branch and prune”) and used at every node of the search tree to narrow down the search space, so it is critical that it be fast. The procedure invokes constraint propagators until a common fixpoint is reached, but the known algorithms for this have a pseudo-polynomial worst-case time complexity: they are fast indeed when the variables have a small numerical range, but they have the well-known problem of being prohibitively slow when these ranges are large. An important question is therefore whether strongly-polynomial algorithms exist that compute the common bound consistent fixpoint of a set of constraints. This paper answers this question. In particular we show that this fixpoint computation is in fact NP-complete, even when restricted to binary linear constraints.
doi_str_mv 10.1613/jair.3248
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554109520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554109520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-8bb54150d88a46779a6963f50da30e130a0313d26814ef0e6e0de3e0de23588e3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFYPfoOAJ5HU2Z3snxy1VC0U9FDPy7aZ1IQ2G3cTsN_ehHrwMm94PN6DH2O3HGZccXysXRVmKDJzxiYctEpzLfX5v_-SXcVYA_A8E2bCHtZflMz9od3TT9UdE18my6ajHYXk2fdNkXwE37qd6yrfXLOL0u0j3fzplH2-LNbzt3T1_rqcP63SrZC6S81mIzMuoTDGZUrr3KlcYTkYDoE4ggPkWAhleEYlkCIoCMcjUBpDOGV3p942-O-eYmdr34dmmLRCDtWQSwFD6v6U2gYfY6DStqE6uHC0HOzIwo4s7MgCfwFvr0-5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554109520</pqid></control><display><type>article</type><title>The Complexity of Integer Bound Propagation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Bordeaux, L. ; Katsirelos, G. ; Narodytska, N. ; Vardi, M. Y.</creator><creatorcontrib>Bordeaux, L. ; Katsirelos, G. ; Narodytska, N. ; Vardi, M. Y.</creatorcontrib><description>Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (”branch and prune”) and used at every node of the search tree to narrow down the search space, so it is critical that it be fast. The procedure invokes constraint propagators until a common fixpoint is reached, but the known algorithms for this have a pseudo-polynomial worst-case time complexity: they are fast indeed when the variables have a small numerical range, but they have the well-known problem of being prohibitively slow when these ranges are large. An important question is therefore whether strongly-polynomial algorithms exist that compute the common bound consistent fixpoint of a set of constraints. This paper answers this question. In particular we show that this fixpoint computation is in fact NP-complete, even when restricted to binary linear constraints.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.3248</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Algorithms ; Artificial intelligence ; Complexity ; Polynomials ; Propagation ; Questions ; Searching</subject><ispartof>The Journal of artificial intelligence research, 2011-01, Vol.40, p.657-676</ispartof><rights>2011. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-8bb54150d88a46779a6963f50da30e130a0313d26814ef0e6e0de3e0de23588e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Bordeaux, L.</creatorcontrib><creatorcontrib>Katsirelos, G.</creatorcontrib><creatorcontrib>Narodytska, N.</creatorcontrib><creatorcontrib>Vardi, M. Y.</creatorcontrib><title>The Complexity of Integer Bound Propagation</title><title>The Journal of artificial intelligence research</title><description>Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (”branch and prune”) and used at every node of the search tree to narrow down the search space, so it is critical that it be fast. The procedure invokes constraint propagators until a common fixpoint is reached, but the known algorithms for this have a pseudo-polynomial worst-case time complexity: they are fast indeed when the variables have a small numerical range, but they have the well-known problem of being prohibitively slow when these ranges are large. An important question is therefore whether strongly-polynomial algorithms exist that compute the common bound consistent fixpoint of a set of constraints. This paper answers this question. In particular we show that this fixpoint computation is in fact NP-complete, even when restricted to binary linear constraints.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Complexity</subject><subject>Polynomials</subject><subject>Propagation</subject><subject>Questions</subject><subject>Searching</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE9Lw0AQxRdRsFYPfoOAJ5HU2Z3snxy1VC0U9FDPy7aZ1IQ2G3cTsN_ehHrwMm94PN6DH2O3HGZccXysXRVmKDJzxiYctEpzLfX5v_-SXcVYA_A8E2bCHtZflMz9od3TT9UdE18my6ajHYXk2fdNkXwE37qd6yrfXLOL0u0j3fzplH2-LNbzt3T1_rqcP63SrZC6S81mIzMuoTDGZUrr3KlcYTkYDoE4ggPkWAhleEYlkCIoCMcjUBpDOGV3p942-O-eYmdr34dmmLRCDtWQSwFD6v6U2gYfY6DStqE6uHC0HOzIwo4s7MgCfwFvr0-5</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Bordeaux, L.</creator><creator>Katsirelos, G.</creator><creator>Narodytska, N.</creator><creator>Vardi, M. Y.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110101</creationdate><title>The Complexity of Integer Bound Propagation</title><author>Bordeaux, L. ; Katsirelos, G. ; Narodytska, N. ; Vardi, M. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-8bb54150d88a46779a6963f50da30e130a0313d26814ef0e6e0de3e0de23588e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Complexity</topic><topic>Polynomials</topic><topic>Propagation</topic><topic>Questions</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bordeaux, L.</creatorcontrib><creatorcontrib>Katsirelos, G.</creatorcontrib><creatorcontrib>Narodytska, N.</creatorcontrib><creatorcontrib>Vardi, M. Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bordeaux, L.</au><au>Katsirelos, G.</au><au>Narodytska, N.</au><au>Vardi, M. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Complexity of Integer Bound Propagation</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>40</volume><spage>657</spage><epage>676</epage><pages>657-676</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>Bound propagation is an important Artificial Intelligence technique used in Constraint Programming tools to deal with numerical constraints. It is typically embedded within a search procedure (”branch and prune”) and used at every node of the search tree to narrow down the search space, so it is critical that it be fast. The procedure invokes constraint propagators until a common fixpoint is reached, but the known algorithms for this have a pseudo-polynomial worst-case time complexity: they are fast indeed when the variables have a small numerical range, but they have the well-known problem of being prohibitively slow when these ranges are large. An important question is therefore whether strongly-polynomial algorithms exist that compute the common bound consistent fixpoint of a set of constraints. This paper answers this question. In particular we show that this fixpoint computation is in fact NP-complete, even when restricted to binary linear constraints.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.3248</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-9757
ispartof The Journal of artificial intelligence research, 2011-01, Vol.40, p.657-676
issn 1076-9757
1076-9757
1943-5037
language eng
recordid cdi_proquest_journals_2554109520
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals
subjects Algorithms
Artificial intelligence
Complexity
Polynomials
Propagation
Questions
Searching
title The Complexity of Integer Bound Propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Complexity%20of%20Integer%20Bound%20Propagation&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Bordeaux,%20L.&rft.date=2011-01-01&rft.volume=40&rft.spage=657&rft.epage=676&rft.pages=657-676&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.3248&rft_dat=%3Cproquest_cross%3E2554109520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554109520&rft_id=info:pmid/&rfr_iscdi=true