Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems

We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of artificial intelligence research 2013-01, Vol.46, p.303-341
Hauptverfasser: Metodi, A., Codish, M., Stuckey, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue
container_start_page 303
container_title The Journal of artificial intelligence research
container_volume 46
creator Metodi, A.
Codish, M.
Stuckey, P. J.
description We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the constraints. A key factor is that considering only a small fragment of a constraint model at one time enables us to apply stronger, and even complete, reasoning to detect equivalent literals in that fragment. Once detected, equivalences apply to simplify the entire constraint model and facilitate further reasoning on other fragments. Equi-propagation in combination with partial evaluation and constraint simplification provide the foundation for a powerful approach to SAT-based finite domain constraint solving. We introduce a tool called BEE (Ben-Gurion Equi-propagation Encoder) based on these ideas and demonstrate for a variety of benchmarks that our approach leads to a considerable reduction in the size of CNF encodings and subsequent speed-ups in SAT solving times.
doi_str_mv 10.1613/jair.3809
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554104105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554104105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-25e0ef50caafe7b64a4058cf1f22722fd4872f252419f3f4ef31a589b0cff4a23</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKsH_0HAk4et-ezuHmvZqlBQsF68hNk0U1K2SZtsD_57t9SDMDBzeJj35SHknrMJn3L5tAWfJrJi9QUZcVZOi7rU5eW_-5rc5LxljNdKVCPy_Rxj5yDQ5nD0xT7FPWyg9zFQjInOY7A-OwphTRtEb70LPf2crWgTbFz7sMk04oDtWh-gj8lDRz9SbDu3y7fkCqHL7u5vj8nXolnNX4vl-8vbfLYsrBSyL4R2zKFmFgBd2U4VKKYrixyFKIXAtapKgUILxWuUqBxKDrqqW2YRFQg5Jg_nv0P7w9Hl3mzjMYUh0gitFWfD6IF6PFM2xZyTQ7NPfgfpx3BmTurMSZ05qZO__lNh1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554104105</pqid></control><display><type>article</type><title>Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Metodi, A. ; Codish, M. ; Stuckey, P. J.</creator><creatorcontrib>Metodi, A. ; Codish, M. ; Stuckey, P. J.</creatorcontrib><description>We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the constraints. A key factor is that considering only a small fragment of a constraint model at one time enables us to apply stronger, and even complete, reasoning to detect equivalent literals in that fragment. Once detected, equivalences apply to simplify the entire constraint model and facilitate further reasoning on other fragments. Equi-propagation in combination with partial evaluation and constraint simplification provide the foundation for a powerful approach to SAT-based finite domain constraint solving. We introduce a tool called BEE (Ben-Gurion Equi-propagation Encoder) based on these ideas and demonstrate for a variety of benchmarks that our approach leads to a considerable reduction in the size of CNF encodings and subsequent speed-ups in SAT solving times.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.3809</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Artificial intelligence ; Boolean ; Boolean algebra ; Boolean functions ; Coders ; Combinatorial analysis ; Constraint modelling ; Equivalence ; Propagation ; Reasoning</subject><ispartof>The Journal of artificial intelligence research, 2013-01, Vol.46, p.303-341</ispartof><rights>2013. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-25e0ef50caafe7b64a4058cf1f22722fd4872f252419f3f4ef31a589b0cff4a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Metodi, A.</creatorcontrib><creatorcontrib>Codish, M.</creatorcontrib><creatorcontrib>Stuckey, P. J.</creatorcontrib><title>Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems</title><title>The Journal of artificial intelligence research</title><description>We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the constraints. A key factor is that considering only a small fragment of a constraint model at one time enables us to apply stronger, and even complete, reasoning to detect equivalent literals in that fragment. Once detected, equivalences apply to simplify the entire constraint model and facilitate further reasoning on other fragments. Equi-propagation in combination with partial evaluation and constraint simplification provide the foundation for a powerful approach to SAT-based finite domain constraint solving. We introduce a tool called BEE (Ben-Gurion Equi-propagation Encoder) based on these ideas and demonstrate for a variety of benchmarks that our approach leads to a considerable reduction in the size of CNF encodings and subsequent speed-ups in SAT solving times.</description><subject>Artificial intelligence</subject><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Coders</subject><subject>Combinatorial analysis</subject><subject>Constraint modelling</subject><subject>Equivalence</subject><subject>Propagation</subject><subject>Reasoning</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1LAzEQhoMoWKsH_0HAk4et-ezuHmvZqlBQsF68hNk0U1K2SZtsD_57t9SDMDBzeJj35SHknrMJn3L5tAWfJrJi9QUZcVZOi7rU5eW_-5rc5LxljNdKVCPy_Rxj5yDQ5nD0xT7FPWyg9zFQjInOY7A-OwphTRtEb70LPf2crWgTbFz7sMk04oDtWh-gj8lDRz9SbDu3y7fkCqHL7u5vj8nXolnNX4vl-8vbfLYsrBSyL4R2zKFmFgBd2U4VKKYrixyFKIXAtapKgUILxWuUqBxKDrqqW2YRFQg5Jg_nv0P7w9Hl3mzjMYUh0gitFWfD6IF6PFM2xZyTQ7NPfgfpx3BmTurMSZ05qZO__lNh1Q</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Metodi, A.</creator><creator>Codish, M.</creator><creator>Stuckey, P. J.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20130101</creationdate><title>Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems</title><author>Metodi, A. ; Codish, M. ; Stuckey, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-25e0ef50caafe7b64a4058cf1f22722fd4872f252419f3f4ef31a589b0cff4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial intelligence</topic><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Coders</topic><topic>Combinatorial analysis</topic><topic>Constraint modelling</topic><topic>Equivalence</topic><topic>Propagation</topic><topic>Reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metodi, A.</creatorcontrib><creatorcontrib>Codish, M.</creatorcontrib><creatorcontrib>Stuckey, P. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metodi, A.</au><au>Codish, M.</au><au>Stuckey, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>46</volume><spage>303</spage><epage>341</epage><pages>303-341</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the constraints. A key factor is that considering only a small fragment of a constraint model at one time enables us to apply stronger, and even complete, reasoning to detect equivalent literals in that fragment. Once detected, equivalences apply to simplify the entire constraint model and facilitate further reasoning on other fragments. Equi-propagation in combination with partial evaluation and constraint simplification provide the foundation for a powerful approach to SAT-based finite domain constraint solving. We introduce a tool called BEE (Ben-Gurion Equi-propagation Encoder) based on these ideas and demonstrate for a variety of benchmarks that our approach leads to a considerable reduction in the size of CNF encodings and subsequent speed-ups in SAT solving times.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.3809</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-9757
ispartof The Journal of artificial intelligence research, 2013-01, Vol.46, p.303-341
issn 1076-9757
1076-9757
1943-5037
language eng
recordid cdi_proquest_journals_2554104105
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals
subjects Artificial intelligence
Boolean
Boolean algebra
Boolean functions
Coders
Combinatorial analysis
Constraint modelling
Equivalence
Propagation
Reasoning
title Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boolean%20Equi-propagation%20for%20Concise%20and%20Efficient%20SAT%20Encodings%20of%20Combinatorial%20Problems&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Metodi,%20A.&rft.date=2013-01-01&rft.volume=46&rft.spage=303&rft.epage=341&rft.pages=303-341&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.3809&rft_dat=%3Cproquest_cross%3E2554104105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554104105&rft_id=info:pmid/&rfr_iscdi=true