Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems
We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the...
Gespeichert in:
Veröffentlicht in: | The Journal of artificial intelligence research 2013-01, Vol.46, p.303-341 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 341 |
---|---|
container_issue | |
container_start_page | 303 |
container_title | The Journal of artificial intelligence research |
container_volume | 46 |
creator | Metodi, A. Codish, M. Stuckey, P. J. |
description | We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the constraints. A key factor is that considering only a small fragment of a constraint model at one time enables us to apply stronger, and even complete, reasoning to detect equivalent literals in that fragment. Once detected, equivalences apply to simplify the entire constraint model and facilitate further reasoning on other fragments. Equi-propagation in combination with partial evaluation and constraint simplification provide the foundation for a powerful approach to SAT-based finite domain constraint solving. We introduce a tool called BEE (Ben-Gurion Equi-propagation Encoder) based on these ideas and demonstrate for a variety of benchmarks that our approach leads to a considerable reduction in the size of CNF encodings and subsequent speed-ups in SAT solving times. |
doi_str_mv | 10.1613/jair.3809 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554104105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554104105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-25e0ef50caafe7b64a4058cf1f22722fd4872f252419f3f4ef31a589b0cff4a23</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKsH_0HAk4et-ezuHmvZqlBQsF68hNk0U1K2SZtsD_57t9SDMDBzeJj35SHknrMJn3L5tAWfJrJi9QUZcVZOi7rU5eW_-5rc5LxljNdKVCPy_Rxj5yDQ5nD0xT7FPWyg9zFQjInOY7A-OwphTRtEb70LPf2crWgTbFz7sMk04oDtWh-gj8lDRz9SbDu3y7fkCqHL7u5vj8nXolnNX4vl-8vbfLYsrBSyL4R2zKFmFgBd2U4VKKYrixyFKIXAtapKgUILxWuUqBxKDrqqW2YRFQg5Jg_nv0P7w9Hl3mzjMYUh0gitFWfD6IF6PFM2xZyTQ7NPfgfpx3BmTurMSZ05qZO__lNh1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554104105</pqid></control><display><type>article</type><title>Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Metodi, A. ; Codish, M. ; Stuckey, P. J.</creator><creatorcontrib>Metodi, A. ; Codish, M. ; Stuckey, P. J.</creatorcontrib><description>We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the constraints. A key factor is that considering only a small fragment of a constraint model at one time enables us to apply stronger, and even complete, reasoning to detect equivalent literals in that fragment. Once detected, equivalences apply to simplify the entire constraint model and facilitate further reasoning on other fragments. Equi-propagation in combination with partial evaluation and constraint simplification provide the foundation for a powerful approach to SAT-based finite domain constraint solving. We introduce a tool called BEE (Ben-Gurion Equi-propagation Encoder) based on these ideas and demonstrate for a variety of benchmarks that our approach leads to a considerable reduction in the size of CNF encodings and subsequent speed-ups in SAT solving times.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.3809</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Artificial intelligence ; Boolean ; Boolean algebra ; Boolean functions ; Coders ; Combinatorial analysis ; Constraint modelling ; Equivalence ; Propagation ; Reasoning</subject><ispartof>The Journal of artificial intelligence research, 2013-01, Vol.46, p.303-341</ispartof><rights>2013. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-25e0ef50caafe7b64a4058cf1f22722fd4872f252419f3f4ef31a589b0cff4a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Metodi, A.</creatorcontrib><creatorcontrib>Codish, M.</creatorcontrib><creatorcontrib>Stuckey, P. J.</creatorcontrib><title>Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems</title><title>The Journal of artificial intelligence research</title><description>We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the constraints. A key factor is that considering only a small fragment of a constraint model at one time enables us to apply stronger, and even complete, reasoning to detect equivalent literals in that fragment. Once detected, equivalences apply to simplify the entire constraint model and facilitate further reasoning on other fragments. Equi-propagation in combination with partial evaluation and constraint simplification provide the foundation for a powerful approach to SAT-based finite domain constraint solving. We introduce a tool called BEE (Ben-Gurion Equi-propagation Encoder) based on these ideas and demonstrate for a variety of benchmarks that our approach leads to a considerable reduction in the size of CNF encodings and subsequent speed-ups in SAT solving times.</description><subject>Artificial intelligence</subject><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Coders</subject><subject>Combinatorial analysis</subject><subject>Constraint modelling</subject><subject>Equivalence</subject><subject>Propagation</subject><subject>Reasoning</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1LAzEQhoMoWKsH_0HAk4et-ezuHmvZqlBQsF68hNk0U1K2SZtsD_57t9SDMDBzeJj35SHknrMJn3L5tAWfJrJi9QUZcVZOi7rU5eW_-5rc5LxljNdKVCPy_Rxj5yDQ5nD0xT7FPWyg9zFQjInOY7A-OwphTRtEb70LPf2crWgTbFz7sMk04oDtWh-gj8lDRz9SbDu3y7fkCqHL7u5vj8nXolnNX4vl-8vbfLYsrBSyL4R2zKFmFgBd2U4VKKYrixyFKIXAtapKgUILxWuUqBxKDrqqW2YRFQg5Jg_nv0P7w9Hl3mzjMYUh0gitFWfD6IF6PFM2xZyTQ7NPfgfpx3BmTurMSZ05qZO__lNh1Q</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Metodi, A.</creator><creator>Codish, M.</creator><creator>Stuckey, P. J.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20130101</creationdate><title>Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems</title><author>Metodi, A. ; Codish, M. ; Stuckey, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-25e0ef50caafe7b64a4058cf1f22722fd4872f252419f3f4ef31a589b0cff4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial intelligence</topic><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Coders</topic><topic>Combinatorial analysis</topic><topic>Constraint modelling</topic><topic>Equivalence</topic><topic>Propagation</topic><topic>Reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metodi, A.</creatorcontrib><creatorcontrib>Codish, M.</creatorcontrib><creatorcontrib>Stuckey, P. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metodi, A.</au><au>Codish, M.</au><au>Stuckey, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>46</volume><spage>303</spage><epage>341</epage><pages>303-341</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>We present an approach to propagation-based SAT encoding of combinatorial problems, Boolean equi-propagation, where constraints are modeled as Boolean functions which propagate information about equalities between Boolean literals. This information is then applied to simplify the CNF encoding of the constraints. A key factor is that considering only a small fragment of a constraint model at one time enables us to apply stronger, and even complete, reasoning to detect equivalent literals in that fragment. Once detected, equivalences apply to simplify the entire constraint model and facilitate further reasoning on other fragments. Equi-propagation in combination with partial evaluation and constraint simplification provide the foundation for a powerful approach to SAT-based finite domain constraint solving. We introduce a tool called BEE (Ben-Gurion Equi-propagation Encoder) based on these ideas and demonstrate for a variety of benchmarks that our approach leads to a considerable reduction in the size of CNF encodings and subsequent speed-ups in SAT solving times.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.3809</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2013-01, Vol.46, p.303-341 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554104105 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals |
subjects | Artificial intelligence Boolean Boolean algebra Boolean functions Coders Combinatorial analysis Constraint modelling Equivalence Propagation Reasoning |
title | Boolean Equi-propagation for Concise and Efficient SAT Encodings of Combinatorial Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boolean%20Equi-propagation%20for%20Concise%20and%20Efficient%20SAT%20Encodings%20of%20Combinatorial%20Problems&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Metodi,%20A.&rft.date=2013-01-01&rft.volume=46&rft.spage=303&rft.epage=341&rft.pages=303-341&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.3809&rft_dat=%3Cproquest_cross%3E2554104105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554104105&rft_id=info:pmid/&rfr_iscdi=true |