Multimodal Distributional Semantics
Distributional semantic models derive computational representations of word meaning from the patterns of co-occurrence of words in text. Such models have been a success story of computational linguistics, being able to provide reliable estimates of semantic relatedness for the many semantic tasks re...
Gespeichert in:
Veröffentlicht in: | The Journal of artificial intelligence research 2014-01, Vol.49, p.1-47 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | The Journal of artificial intelligence research |
container_volume | 49 |
creator | Bruni, E. Tran, N. K. Baroni, M. |
description | Distributional semantic models derive computational representations of word meaning from the patterns of co-occurrence of words in text. Such models have been a success story of computational linguistics, being able to provide reliable estimates of semantic relatedness for the many semantic tasks requiring them. However, distributional models extract meaning information exclusively from text, which is an extremely impoverished basis compared to the rich perceptual sources that ground human semantic knowledge. We address the lack of perceptual grounding of distributional models by exploiting computer vision techniques that automatically identify discrete visual words in images, so that the distributional representation of a word can be extended to also encompass its co-occurrence with the visual words of images it is associated with. We propose a flexible architecture to integrate text- and image-based distributional information, and we show in a set of empirical tests that our integrated model is superior to the purely text-based approach, and it provides somewhat complementary semantic information with respect to the latter. |
doi_str_mv | 10.1613/jair.4135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554099077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554099077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-92a8d667da34748140be215775b2871a7175279c3adad562537ac077406047a3</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsFYX_gOhKxepc-d1M0upT6i4sPvhZpLChKSpM5OF_96EunB1z4WPw-Fj7Bb4GgzIh5ZCXCuQ-owtgKMpLGo8_5cv2VVKLedglSgXbPUxdjn0Q03d3VNIOYZqzGE4TO9X09MhB5-u2cWeutTc_N0l27087zZvxfbz9X3zuC281GUurKCyNgZrkgpVCYpXjQCNqCtRIhACaoHWS6qp1kZoieQ5ouKGKyS5ZKtT7TEO32OTsmuHMU5LkhNaK27tBE_U_YnycUgpNnt3jKGn-OOAu1mBmxW4WYH8BW1-TFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554099077</pqid></control><display><type>article</type><title>Multimodal Distributional Semantics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Bruni, E. ; Tran, N. K. ; Baroni, M.</creator><creatorcontrib>Bruni, E. ; Tran, N. K. ; Baroni, M.</creatorcontrib><description>Distributional semantic models derive computational representations of word meaning from the patterns of co-occurrence of words in text. Such models have been a success story of computational linguistics, being able to provide reliable estimates of semantic relatedness for the many semantic tasks requiring them. However, distributional models extract meaning information exclusively from text, which is an extremely impoverished basis compared to the rich perceptual sources that ground human semantic knowledge. We address the lack of perceptual grounding of distributional models by exploiting computer vision techniques that automatically identify discrete visual words in images, so that the distributional representation of a word can be extended to also encompass its co-occurrence with the visual words of images it is associated with. We propose a flexible architecture to integrate text- and image-based distributional information, and we show in a set of empirical tests that our integrated model is superior to the purely text-based approach, and it provides somewhat complementary semantic information with respect to the latter.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.4135</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Artificial intelligence ; Computational linguistics ; Computer vision ; Linguistics ; Perceptions ; Representations ; Semantics ; Simulation ; Word meaning ; Words (language)</subject><ispartof>The Journal of artificial intelligence research, 2014-01, Vol.49, p.1-47</ispartof><rights>2014. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-92a8d667da34748140be215775b2871a7175279c3adad562537ac077406047a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Bruni, E.</creatorcontrib><creatorcontrib>Tran, N. K.</creatorcontrib><creatorcontrib>Baroni, M.</creatorcontrib><title>Multimodal Distributional Semantics</title><title>The Journal of artificial intelligence research</title><description>Distributional semantic models derive computational representations of word meaning from the patterns of co-occurrence of words in text. Such models have been a success story of computational linguistics, being able to provide reliable estimates of semantic relatedness for the many semantic tasks requiring them. However, distributional models extract meaning information exclusively from text, which is an extremely impoverished basis compared to the rich perceptual sources that ground human semantic knowledge. We address the lack of perceptual grounding of distributional models by exploiting computer vision techniques that automatically identify discrete visual words in images, so that the distributional representation of a word can be extended to also encompass its co-occurrence with the visual words of images it is associated with. We propose a flexible architecture to integrate text- and image-based distributional information, and we show in a set of empirical tests that our integrated model is superior to the purely text-based approach, and it provides somewhat complementary semantic information with respect to the latter.</description><subject>Artificial intelligence</subject><subject>Computational linguistics</subject><subject>Computer vision</subject><subject>Linguistics</subject><subject>Perceptions</subject><subject>Representations</subject><subject>Semantics</subject><subject>Simulation</subject><subject>Word meaning</subject><subject>Words (language)</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLw0AUhQdRsFYX_gOhKxepc-d1M0upT6i4sPvhZpLChKSpM5OF_96EunB1z4WPw-Fj7Bb4GgzIh5ZCXCuQ-owtgKMpLGo8_5cv2VVKLedglSgXbPUxdjn0Q03d3VNIOYZqzGE4TO9X09MhB5-u2cWeutTc_N0l27087zZvxfbz9X3zuC281GUurKCyNgZrkgpVCYpXjQCNqCtRIhACaoHWS6qp1kZoieQ5ouKGKyS5ZKtT7TEO32OTsmuHMU5LkhNaK27tBE_U_YnycUgpNnt3jKGn-OOAu1mBmxW4WYH8BW1-TFw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Bruni, E.</creator><creator>Tran, N. K.</creator><creator>Baroni, M.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20140101</creationdate><title>Multimodal Distributional Semantics</title><author>Bruni, E. ; Tran, N. K. ; Baroni, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-92a8d667da34748140be215775b2871a7175279c3adad562537ac077406047a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial intelligence</topic><topic>Computational linguistics</topic><topic>Computer vision</topic><topic>Linguistics</topic><topic>Perceptions</topic><topic>Representations</topic><topic>Semantics</topic><topic>Simulation</topic><topic>Word meaning</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruni, E.</creatorcontrib><creatorcontrib>Tran, N. K.</creatorcontrib><creatorcontrib>Baroni, M.</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruni, E.</au><au>Tran, N. K.</au><au>Baroni, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Distributional Semantics</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>49</volume><spage>1</spage><epage>47</epage><pages>1-47</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>Distributional semantic models derive computational representations of word meaning from the patterns of co-occurrence of words in text. Such models have been a success story of computational linguistics, being able to provide reliable estimates of semantic relatedness for the many semantic tasks requiring them. However, distributional models extract meaning information exclusively from text, which is an extremely impoverished basis compared to the rich perceptual sources that ground human semantic knowledge. We address the lack of perceptual grounding of distributional models by exploiting computer vision techniques that automatically identify discrete visual words in images, so that the distributional representation of a word can be extended to also encompass its co-occurrence with the visual words of images it is associated with. We propose a flexible architecture to integrate text- and image-based distributional information, and we show in a set of empirical tests that our integrated model is superior to the purely text-based approach, and it provides somewhat complementary semantic information with respect to the latter.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.4135</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2014-01, Vol.49, p.1-47 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554099077 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals |
subjects | Artificial intelligence Computational linguistics Computer vision Linguistics Perceptions Representations Semantics Simulation Word meaning Words (language) |
title | Multimodal Distributional Semantics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Distributional%20Semantics&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Bruni,%20E.&rft.date=2014-01-01&rft.volume=49&rft.spage=1&rft.epage=47&rft.pages=1-47&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.4135&rft_dat=%3Cproquest_cross%3E2554099077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554099077&rft_id=info:pmid/&rfr_iscdi=true |