How Translation Alters Sentiment
Sentiment analysis research has predominantly been on English texts. Thus there exist many sentiment resources for English, but less so for other languages. Approaches to improve sentiment analysis in a resource-poor focus language include: (a) translate the focus language text into a resource-rich...
Gespeichert in:
Veröffentlicht in: | The Journal of artificial intelligence research 2016-01, Vol.55, p.95-130 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | |
container_start_page | 95 |
container_title | The Journal of artificial intelligence research |
container_volume | 55 |
creator | Mohammad, Saif M. Salameh, Mohammad Kiritchenko, Svetlana |
description | Sentiment analysis research has predominantly been on English texts. Thus there exist many sentiment resources for English, but less so for other languages. Approaches to improve sentiment analysis in a resource-poor focus language include: (a) translate the focus language text into a resource-rich language such as English, and apply a powerful English sentiment analysis system on the text, and (b) translate resources such as sentiment labeled corpora and sentiment lexicons from English into the focus language, and use them as additional resources in the focus-language sentiment analysis system. In this paper we systematically examine both options. We use Arabic social media posts as stand-in for the focus language text. We show that sentiment analysis of English translations of Arabic texts produces competitive results, w.r.t. Arabic sentiment analysis. We show that Arabic sentiment analysis systems benefit from the use of automatically translated English sentiment lexicons. We also conduct manual annotation studies to examine why the sentiment of a translation is different from the sentiment of the source word or text. This is especially relevant for building better automatic translation systems. In the process, we create a state-of-the-art Arabic sentiment analysis system, a new dialectal Arabic sentiment lexicon, and the first Arabic-English parallel corpus that is independently annotated for sentiment by Arabic and English speakers. |
doi_str_mv | 10.1613/jair.4787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554097570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554097570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-d20da70cfcc4747916238852e90a9fd3554da081053ac1aff99497820317bdc83</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxS0EEqUw8A0iMTGknP_l7LGqoEWqxNB2toxjS4nSpNiuEN-eRGVguXfDe3dPP0IeKSxoRflLa5u4EKjwiswoYFVqlHj9b78ldym1AFQLpmak2AzfxT7aPnU2N0NfLLvsYyp2vs_NcRz35CbYLvmHP52Tw9vrfrUptx_r99VyWzomMZc1g9oiuOCcQIGaVowrJZnXYHWouZSitqAoSG4dtSFoLTQqBpziZ-0Un5Ony91THL7OPmXTDufYjy8NG8MwdYfR9XxxuTikFH0wp9gcbfwxFMwEwEwAzASA_wK3FEwL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554097570</pqid></control><display><type>article</type><title>How Translation Alters Sentiment</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Mohammad, Saif M. ; Salameh, Mohammad ; Kiritchenko, Svetlana</creator><creatorcontrib>Mohammad, Saif M. ; Salameh, Mohammad ; Kiritchenko, Svetlana</creatorcontrib><description>Sentiment analysis research has predominantly been on English texts. Thus there exist many sentiment resources for English, but less so for other languages. Approaches to improve sentiment analysis in a resource-poor focus language include: (a) translate the focus language text into a resource-rich language such as English, and apply a powerful English sentiment analysis system on the text, and (b) translate resources such as sentiment labeled corpora and sentiment lexicons from English into the focus language, and use them as additional resources in the focus-language sentiment analysis system. In this paper we systematically examine both options. We use Arabic social media posts as stand-in for the focus language text. We show that sentiment analysis of English translations of Arabic texts produces competitive results, w.r.t. Arabic sentiment analysis. We show that Arabic sentiment analysis systems benefit from the use of automatically translated English sentiment lexicons. We also conduct manual annotation studies to examine why the sentiment of a translation is different from the sentiment of the source word or text. This is especially relevant for building better automatic translation systems. In the process, we create a state-of-the-art Arabic sentiment analysis system, a new dialectal Arabic sentiment lexicon, and the first Arabic-English parallel corpus that is independently annotated for sentiment by Arabic and English speakers.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.4787</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Annotations ; Artificial intelligence ; Data mining ; English language ; Language ; Sentiment analysis ; Texts</subject><ispartof>The Journal of artificial intelligence research, 2016-01, Vol.55, p.95-130</ispartof><rights>2016. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-d20da70cfcc4747916238852e90a9fd3554da081053ac1aff99497820317bdc83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Mohammad, Saif M.</creatorcontrib><creatorcontrib>Salameh, Mohammad</creatorcontrib><creatorcontrib>Kiritchenko, Svetlana</creatorcontrib><title>How Translation Alters Sentiment</title><title>The Journal of artificial intelligence research</title><description>Sentiment analysis research has predominantly been on English texts. Thus there exist many sentiment resources for English, but less so for other languages. Approaches to improve sentiment analysis in a resource-poor focus language include: (a) translate the focus language text into a resource-rich language such as English, and apply a powerful English sentiment analysis system on the text, and (b) translate resources such as sentiment labeled corpora and sentiment lexicons from English into the focus language, and use them as additional resources in the focus-language sentiment analysis system. In this paper we systematically examine both options. We use Arabic social media posts as stand-in for the focus language text. We show that sentiment analysis of English translations of Arabic texts produces competitive results, w.r.t. Arabic sentiment analysis. We show that Arabic sentiment analysis systems benefit from the use of automatically translated English sentiment lexicons. We also conduct manual annotation studies to examine why the sentiment of a translation is different from the sentiment of the source word or text. This is especially relevant for building better automatic translation systems. In the process, we create a state-of-the-art Arabic sentiment analysis system, a new dialectal Arabic sentiment lexicon, and the first Arabic-English parallel corpus that is independently annotated for sentiment by Arabic and English speakers.</description><subject>Annotations</subject><subject>Artificial intelligence</subject><subject>Data mining</subject><subject>English language</subject><subject>Language</subject><subject>Sentiment analysis</subject><subject>Texts</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkD9PwzAQxS0EEqUw8A0iMTGknP_l7LGqoEWqxNB2toxjS4nSpNiuEN-eRGVguXfDe3dPP0IeKSxoRflLa5u4EKjwiswoYFVqlHj9b78ldym1AFQLpmak2AzfxT7aPnU2N0NfLLvsYyp2vs_NcRz35CbYLvmHP52Tw9vrfrUptx_r99VyWzomMZc1g9oiuOCcQIGaVowrJZnXYHWouZSitqAoSG4dtSFoLTQqBpziZ-0Un5Ony91THL7OPmXTDufYjy8NG8MwdYfR9XxxuTikFH0wp9gcbfwxFMwEwEwAzASA_wK3FEwL</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Mohammad, Saif M.</creator><creator>Salameh, Mohammad</creator><creator>Kiritchenko, Svetlana</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160101</creationdate><title>How Translation Alters Sentiment</title><author>Mohammad, Saif M. ; Salameh, Mohammad ; Kiritchenko, Svetlana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-d20da70cfcc4747916238852e90a9fd3554da081053ac1aff99497820317bdc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annotations</topic><topic>Artificial intelligence</topic><topic>Data mining</topic><topic>English language</topic><topic>Language</topic><topic>Sentiment analysis</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammad, Saif M.</creatorcontrib><creatorcontrib>Salameh, Mohammad</creatorcontrib><creatorcontrib>Kiritchenko, Svetlana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammad, Saif M.</au><au>Salameh, Mohammad</au><au>Kiritchenko, Svetlana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Translation Alters Sentiment</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>55</volume><spage>95</spage><epage>130</epage><pages>95-130</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>Sentiment analysis research has predominantly been on English texts. Thus there exist many sentiment resources for English, but less so for other languages. Approaches to improve sentiment analysis in a resource-poor focus language include: (a) translate the focus language text into a resource-rich language such as English, and apply a powerful English sentiment analysis system on the text, and (b) translate resources such as sentiment labeled corpora and sentiment lexicons from English into the focus language, and use them as additional resources in the focus-language sentiment analysis system. In this paper we systematically examine both options. We use Arabic social media posts as stand-in for the focus language text. We show that sentiment analysis of English translations of Arabic texts produces competitive results, w.r.t. Arabic sentiment analysis. We show that Arabic sentiment analysis systems benefit from the use of automatically translated English sentiment lexicons. We also conduct manual annotation studies to examine why the sentiment of a translation is different from the sentiment of the source word or text. This is especially relevant for building better automatic translation systems. In the process, we create a state-of-the-art Arabic sentiment analysis system, a new dialectal Arabic sentiment lexicon, and the first Arabic-English parallel corpus that is independently annotated for sentiment by Arabic and English speakers.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.4787</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2016-01, Vol.55, p.95-130 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554097570 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals |
subjects | Annotations Artificial intelligence Data mining English language Language Sentiment analysis Texts |
title | How Translation Alters Sentiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Translation%20Alters%20Sentiment&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Mohammad,%20Saif%20M.&rft.date=2016-01-01&rft.volume=55&rft.spage=95&rft.epage=130&rft.pages=95-130&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.4787&rft_dat=%3Cproquest_cross%3E2554097570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554097570&rft_id=info:pmid/&rfr_iscdi=true |