Module Extraction in Expressive Ontology Languages via Datalog Reasoning
Module extraction is the task of computing a (preferably small) fragment M of an ontology T that preserves a class of entailments over a signature of interest S. Extracting modules of minimal size is well-known to be computationally hard, and often algorithmically infeasible, especially for highly e...
Gespeichert in:
Veröffentlicht in: | The Journal of artificial intelligence research 2016-01, Vol.55, p.499-564 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 564 |
---|---|
container_issue | |
container_start_page | 499 |
container_title | The Journal of artificial intelligence research |
container_volume | 55 |
creator | Armas Romero, Ana Kaminski, Mark Cuenca Grau, Bernardo Horrocks, Ian |
description | Module extraction is the task of computing a (preferably small) fragment M of an ontology T that preserves a class of entailments over a signature of interest S. Extracting modules of minimal size is well-known to be computationally hard, and often algorithmically infeasible, especially for highly expressive ontology languages. Thus, practical techniques typically rely on approximations, where M provably captures the relevant entailments, but is not guaranteed to be minimal. Existing approximations ensure that M preserves all second-order entailments of T w.r.t. S, which is a stronger condition than is required in many applications, and may lead to unnecessarily large modules in practice. In this paper we propose a novel approach in which module extraction is reduced to a reasoning problem in datalog. Our approach generalises existing approximations in an elegant way. More importantly, it allows extraction of modules that are tailored to preserve only specific kinds of entailments, and thus are often significantly smaller. Our evaluation on a wide range of ontologies confirms the feasibility and benefits of our approach in practice. |
doi_str_mv | 10.1613/jair.4898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554096889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554096889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-16b905ed7d155fcac0f4d9a95c8ef8ce7629dab836a4a2a37fc22ef50288ff803</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsH3yDgycPWJLvZJEep1QorBdFzmGaTJaUmNdkt9u3dUg-e_vmHjxn4ELqlZEZrWj5swKdZJZU8QxNKRF0owcX5v_kSXeW8IYSqiskJWr7FdthavPjpE5jex4B9GNsu2Zz93uJV6OM2dgfcQOgG6GzGew_4CXoY1_jdQo7Bh-4aXTjYZnvzl1P0-bz4mC-LZvXyOn9sCsO46AtarxXhthUt5dwZMMRVrQLFjbROGitqplpYy7KGChiUwhnGrOOESemcJOUU3Z3u7lL8Hmzu9SYOKYwvNeO8IqqWUo3U_YkyKeacrNO75L8gHTQl-ihKH0Xpo6jyFyQEXIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554096889</pqid></control><display><type>article</type><title>Module Extraction in Expressive Ontology Languages via Datalog Reasoning</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Armas Romero, Ana ; Kaminski, Mark ; Cuenca Grau, Bernardo ; Horrocks, Ian</creator><creatorcontrib>Armas Romero, Ana ; Kaminski, Mark ; Cuenca Grau, Bernardo ; Horrocks, Ian</creatorcontrib><description>Module extraction is the task of computing a (preferably small) fragment M of an ontology T that preserves a class of entailments over a signature of interest S. Extracting modules of minimal size is well-known to be computationally hard, and often algorithmically infeasible, especially for highly expressive ontology languages. Thus, practical techniques typically rely on approximations, where M provably captures the relevant entailments, but is not guaranteed to be minimal. Existing approximations ensure that M preserves all second-order entailments of T w.r.t. S, which is a stronger condition than is required in many applications, and may lead to unnecessarily large modules in practice. In this paper we propose a novel approach in which module extraction is reduced to a reasoning problem in datalog. Our approach generalises existing approximations in an elegant way. More importantly, it allows extraction of modules that are tailored to preserve only specific kinds of entailments, and thus are often significantly smaller. Our evaluation on a wide range of ontologies confirms the feasibility and benefits of our approach in practice.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.4898</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Approximation ; Artificial intelligence ; Languages ; Modules ; Ontology ; Reasoning</subject><ispartof>The Journal of artificial intelligence research, 2016-01, Vol.55, p.499-564</ispartof><rights>2016. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-16b905ed7d155fcac0f4d9a95c8ef8ce7629dab836a4a2a37fc22ef50288ff803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Armas Romero, Ana</creatorcontrib><creatorcontrib>Kaminski, Mark</creatorcontrib><creatorcontrib>Cuenca Grau, Bernardo</creatorcontrib><creatorcontrib>Horrocks, Ian</creatorcontrib><title>Module Extraction in Expressive Ontology Languages via Datalog Reasoning</title><title>The Journal of artificial intelligence research</title><description>Module extraction is the task of computing a (preferably small) fragment M of an ontology T that preserves a class of entailments over a signature of interest S. Extracting modules of minimal size is well-known to be computationally hard, and often algorithmically infeasible, especially for highly expressive ontology languages. Thus, practical techniques typically rely on approximations, where M provably captures the relevant entailments, but is not guaranteed to be minimal. Existing approximations ensure that M preserves all second-order entailments of T w.r.t. S, which is a stronger condition than is required in many applications, and may lead to unnecessarily large modules in practice. In this paper we propose a novel approach in which module extraction is reduced to a reasoning problem in datalog. Our approach generalises existing approximations in an elegant way. More importantly, it allows extraction of modules that are tailored to preserve only specific kinds of entailments, and thus are often significantly smaller. Our evaluation on a wide range of ontologies confirms the feasibility and benefits of our approach in practice.</description><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Languages</subject><subject>Modules</subject><subject>Ontology</subject><subject>Reasoning</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkMFKAzEQhoMoWKsH3yDgycPWJLvZJEep1QorBdFzmGaTJaUmNdkt9u3dUg-e_vmHjxn4ELqlZEZrWj5swKdZJZU8QxNKRF0owcX5v_kSXeW8IYSqiskJWr7FdthavPjpE5jex4B9GNsu2Zz93uJV6OM2dgfcQOgG6GzGew_4CXoY1_jdQo7Bh-4aXTjYZnvzl1P0-bz4mC-LZvXyOn9sCsO46AtarxXhthUt5dwZMMRVrQLFjbROGitqplpYy7KGChiUwhnGrOOESemcJOUU3Z3u7lL8Hmzu9SYOKYwvNeO8IqqWUo3U_YkyKeacrNO75L8gHTQl-ihKH0Xpo6jyFyQEXIE</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Armas Romero, Ana</creator><creator>Kaminski, Mark</creator><creator>Cuenca Grau, Bernardo</creator><creator>Horrocks, Ian</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160101</creationdate><title>Module Extraction in Expressive Ontology Languages via Datalog Reasoning</title><author>Armas Romero, Ana ; Kaminski, Mark ; Cuenca Grau, Bernardo ; Horrocks, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-16b905ed7d155fcac0f4d9a95c8ef8ce7629dab836a4a2a37fc22ef50288ff803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Languages</topic><topic>Modules</topic><topic>Ontology</topic><topic>Reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armas Romero, Ana</creatorcontrib><creatorcontrib>Kaminski, Mark</creatorcontrib><creatorcontrib>Cuenca Grau, Bernardo</creatorcontrib><creatorcontrib>Horrocks, Ian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armas Romero, Ana</au><au>Kaminski, Mark</au><au>Cuenca Grau, Bernardo</au><au>Horrocks, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Module Extraction in Expressive Ontology Languages via Datalog Reasoning</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>55</volume><spage>499</spage><epage>564</epage><pages>499-564</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>Module extraction is the task of computing a (preferably small) fragment M of an ontology T that preserves a class of entailments over a signature of interest S. Extracting modules of minimal size is well-known to be computationally hard, and often algorithmically infeasible, especially for highly expressive ontology languages. Thus, practical techniques typically rely on approximations, where M provably captures the relevant entailments, but is not guaranteed to be minimal. Existing approximations ensure that M preserves all second-order entailments of T w.r.t. S, which is a stronger condition than is required in many applications, and may lead to unnecessarily large modules in practice. In this paper we propose a novel approach in which module extraction is reduced to a reasoning problem in datalog. Our approach generalises existing approximations in an elegant way. More importantly, it allows extraction of modules that are tailored to preserve only specific kinds of entailments, and thus are often significantly smaller. Our evaluation on a wide range of ontologies confirms the feasibility and benefits of our approach in practice.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.4898</doi><tpages>66</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2016-01, Vol.55, p.499-564 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554096889 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals |
subjects | Approximation Artificial intelligence Languages Modules Ontology Reasoning |
title | Module Extraction in Expressive Ontology Languages via Datalog Reasoning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Module%20Extraction%20in%20Expressive%20Ontology%20Languages%20via%20Datalog%20Reasoning&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Armas%20Romero,%20Ana&rft.date=2016-01-01&rft.volume=55&rft.spage=499&rft.epage=564&rft.pages=499-564&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.4898&rft_dat=%3Cproquest_cross%3E2554096889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554096889&rft_id=info:pmid/&rfr_iscdi=true |