A Review of Inference Algorithms for Hybrid Bayesian Networks

Hybrid Bayesian networks have received an increasing attention during the last years. The difference with respect to standard Bayesian networks is that they can host discrete and continuous variables simultaneously, which extends the applicability of the Bayesian network framework in general. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of artificial intelligence research 2018-01, Vol.62, p.799-828
Hauptverfasser: Salmerón, Antonio, Rumí, Rafael, Langseth, Helge, Nielsen, Thomas D., Madsen, Anders L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 828
container_issue
container_start_page 799
container_title The Journal of artificial intelligence research
container_volume 62
creator Salmerón, Antonio
Rumí, Rafael
Langseth, Helge
Nielsen, Thomas D.
Madsen, Anders L.
description Hybrid Bayesian networks have received an increasing attention during the last years. The difference with respect to standard Bayesian networks is that they can host discrete and continuous variables simultaneously, which extends the applicability of the Bayesian network framework in general. However, this extra feature also comes at a cost: inference in these types of models is computationally more challenging and the underlying models and updating procedures may not even support closed-form solutions. In this paper we provide an overview of the main trends and principled approaches for performing inference in hybrid Bayesian networks. The methods covered in the paper are organized and discussed according to their methodological basis. We consider how the methods have been extended and adapted to also include (hybrid) dynamic Bayesian networks, and we end with an overview of established software systems supporting inference in these types of models.
doi_str_mv 10.1613/jair.1.11228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554077732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554077732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-f07e9987741c19b64fe79d41ba2b622940a64f8c634e9983b76530859f5cfca3</originalsourceid><addsrcrecordid>eNpNkEFLwzAYhoMoOKc3f0DAq635krRpDh7qUDcYCrJ7SLNEW7dmJp2j_97WefD0vXw8vC88CF0DSSEHdtfoOqSQAlBanKAJEJEnUmTi9F8-RxcxNoSA5LSYoPsSv9nv2h6wd3jROhtsaywuN-8-1N3HNmLnA573VajX-EH3Nta6xS-2O_jwGS_RmdObaK_-7hStnh5Xs3myfH1ezMplYhiBLnFEWCkLITgYkFXOnRVyzaHStMoplZzo4VeYnPGRY5XIM0aKTLrMOKPZFN0ca3fBf-1t7FTj96EdFhXNMk6EEIwO1O2RMsHHGKxTu1BvdegVEDX6UaMfBerXD_sBlE1XPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554077732</pqid></control><display><type>article</type><title>A Review of Inference Algorithms for Hybrid Bayesian Networks</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free E- Journals</source><creator>Salmerón, Antonio ; Rumí, Rafael ; Langseth, Helge ; Nielsen, Thomas D. ; Madsen, Anders L.</creator><creatorcontrib>Salmerón, Antonio ; Rumí, Rafael ; Langseth, Helge ; Nielsen, Thomas D. ; Madsen, Anders L.</creatorcontrib><description>Hybrid Bayesian networks have received an increasing attention during the last years. The difference with respect to standard Bayesian networks is that they can host discrete and continuous variables simultaneously, which extends the applicability of the Bayesian network framework in general. However, this extra feature also comes at a cost: inference in these types of models is computationally more challenging and the underlying models and updating procedures may not even support closed-form solutions. In this paper we provide an overview of the main trends and principled approaches for performing inference in hybrid Bayesian networks. The methods covered in the paper are organized and discussed according to their methodological basis. We consider how the methods have been extended and adapted to also include (hybrid) dynamic Bayesian networks, and we end with an overview of established software systems supporting inference in these types of models.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.1.11228</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Algorithms ; Artificial intelligence ; Bayesian analysis ; Continuity (mathematics) ; Inference ; Networks</subject><ispartof>The Journal of artificial intelligence research, 2018-01, Vol.62, p.799-828</ispartof><rights>2018. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-f07e9987741c19b64fe79d41ba2b622940a64f8c634e9983b76530859f5cfca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Salmerón, Antonio</creatorcontrib><creatorcontrib>Rumí, Rafael</creatorcontrib><creatorcontrib>Langseth, Helge</creatorcontrib><creatorcontrib>Nielsen, Thomas D.</creatorcontrib><creatorcontrib>Madsen, Anders L.</creatorcontrib><title>A Review of Inference Algorithms for Hybrid Bayesian Networks</title><title>The Journal of artificial intelligence research</title><description>Hybrid Bayesian networks have received an increasing attention during the last years. The difference with respect to standard Bayesian networks is that they can host discrete and continuous variables simultaneously, which extends the applicability of the Bayesian network framework in general. However, this extra feature also comes at a cost: inference in these types of models is computationally more challenging and the underlying models and updating procedures may not even support closed-form solutions. In this paper we provide an overview of the main trends and principled approaches for performing inference in hybrid Bayesian networks. The methods covered in the paper are organized and discussed according to their methodological basis. We consider how the methods have been extended and adapted to also include (hybrid) dynamic Bayesian networks, and we end with an overview of established software systems supporting inference in these types of models.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bayesian analysis</subject><subject>Continuity (mathematics)</subject><subject>Inference</subject><subject>Networks</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkEFLwzAYhoMoOKc3f0DAq635krRpDh7qUDcYCrJ7SLNEW7dmJp2j_97WefD0vXw8vC88CF0DSSEHdtfoOqSQAlBanKAJEJEnUmTi9F8-RxcxNoSA5LSYoPsSv9nv2h6wd3jROhtsaywuN-8-1N3HNmLnA573VajX-EH3Nta6xS-2O_jwGS_RmdObaK_-7hStnh5Xs3myfH1ezMplYhiBLnFEWCkLITgYkFXOnRVyzaHStMoplZzo4VeYnPGRY5XIM0aKTLrMOKPZFN0ca3fBf-1t7FTj96EdFhXNMk6EEIwO1O2RMsHHGKxTu1BvdegVEDX6UaMfBerXD_sBlE1XPA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Salmerón, Antonio</creator><creator>Rumí, Rafael</creator><creator>Langseth, Helge</creator><creator>Nielsen, Thomas D.</creator><creator>Madsen, Anders L.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180101</creationdate><title>A Review of Inference Algorithms for Hybrid Bayesian Networks</title><author>Salmerón, Antonio ; Rumí, Rafael ; Langseth, Helge ; Nielsen, Thomas D. ; Madsen, Anders L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-f07e9987741c19b64fe79d41ba2b622940a64f8c634e9983b76530859f5cfca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bayesian analysis</topic><topic>Continuity (mathematics)</topic><topic>Inference</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salmerón, Antonio</creatorcontrib><creatorcontrib>Rumí, Rafael</creatorcontrib><creatorcontrib>Langseth, Helge</creatorcontrib><creatorcontrib>Nielsen, Thomas D.</creatorcontrib><creatorcontrib>Madsen, Anders L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salmerón, Antonio</au><au>Rumí, Rafael</au><au>Langseth, Helge</au><au>Nielsen, Thomas D.</au><au>Madsen, Anders L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Inference Algorithms for Hybrid Bayesian Networks</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>62</volume><spage>799</spage><epage>828</epage><pages>799-828</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>Hybrid Bayesian networks have received an increasing attention during the last years. The difference with respect to standard Bayesian networks is that they can host discrete and continuous variables simultaneously, which extends the applicability of the Bayesian network framework in general. However, this extra feature also comes at a cost: inference in these types of models is computationally more challenging and the underlying models and updating procedures may not even support closed-form solutions. In this paper we provide an overview of the main trends and principled approaches for performing inference in hybrid Bayesian networks. The methods covered in the paper are organized and discussed according to their methodological basis. We consider how the methods have been extended and adapted to also include (hybrid) dynamic Bayesian networks, and we end with an overview of established software systems supporting inference in these types of models.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.1.11228</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-9757
ispartof The Journal of artificial intelligence research, 2018-01, Vol.62, p.799-828
issn 1076-9757
1076-9757
1943-5037
language eng
recordid cdi_proquest_journals_2554077732
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free E- Journals
subjects Algorithms
Artificial intelligence
Bayesian analysis
Continuity (mathematics)
Inference
Networks
title A Review of Inference Algorithms for Hybrid Bayesian Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Inference%20Algorithms%20for%20Hybrid%20Bayesian%20Networks&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Salmer%C3%B3n,%20Antonio&rft.date=2018-01-01&rft.volume=62&rft.spage=799&rft.epage=828&rft.pages=799-828&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.1.11228&rft_dat=%3Cproquest_cross%3E2554077732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554077732&rft_id=info:pmid/&rfr_iscdi=true