Acceptable Planning: Influencing Individual Behavior to Reduce Transportation Energy Expenditure of a City
Our research aims at developing intelligent systems to reduce the transportation-related energy expenditure of a large city by influencing individual behavior. We introduce Copter - an intelligent travel assistant that evaluates multi-modal travel alternatives to find a plan that is acceptable to a...
Gespeichert in:
Veröffentlicht in: | The Journal of artificial intelligence research 2019-01, Vol.66, p.555-587 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | |
container_start_page | 555 |
container_title | The Journal of artificial intelligence research |
container_volume | 66 |
creator | Mohan, Shiwali Rakha, Hesham Klenk, Matt |
description | Our research aims at developing intelligent systems to reduce the transportation-related energy expenditure of a large city by influencing individual behavior. We introduce Copter - an intelligent travel assistant that evaluates multi-modal travel alternatives to find a plan that is acceptable to a person given their context and preferences. We propose a formulation for acceptable planning that brings together ideas from AI, machine learning, and economics. This formulation has been incorporated in Copter that produces acceptable plans in real-time. We adopt a novel empirical evaluation framework that combines human decision data with a high fidelity multi-modal transportation simulation to demonstrate a 4% energy reduction and 20% delay reduction in a realistic deployment scenario in Los Angeles, California, USA.
This article is part of the special track on AI and Society. |
doi_str_mv | 10.1613/jair.1.11352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2554041616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554041616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-d70eb04a3d341700dca7e6f99172255866875c73803ac90fc179ed8c389e38e43</originalsourceid><addsrcrecordid>eNpNkE9LwzAYxoMoOKc3P0DAq51J0zaNtzmqDgaKzHPI0rczpSY1TYf79mbOg6f3eeH5Az-ErimZ0YKyu1YZP6MzSlmenqAJJbxIBM_56T99ji6GoSWEiiwtJ6idaw19UJsO8GunrDV2e4-XtulGsDo-UddmZ-pRdfgBPtTOOI-Dw29Qjxrw2is79M4HFYyzuLLgt3tcffcQY2H0gF2DFV6YsL9EZ43qBrj6u1P0_litF8_J6uVpuZivEp0WLCQ1J7AhmWI1yygnpNaKQ9EIQXma5nlZFCXPNWclYUoL0mjKBdSlZqUAVkLGpujm2Nt79zXCEGTrRm_jpIz5jGSRVRFdt0eX9m4YPDSy9-ZT-b2kRB5oygNNSeUvTfYDTqRojg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554041616</pqid></control><display><type>article</type><title>Acceptable Planning: Influencing Individual Behavior to Reduce Transportation Energy Expenditure of a City</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Mohan, Shiwali ; Rakha, Hesham ; Klenk, Matt</creator><creatorcontrib>Mohan, Shiwali ; Rakha, Hesham ; Klenk, Matt</creatorcontrib><description>Our research aims at developing intelligent systems to reduce the transportation-related energy expenditure of a large city by influencing individual behavior. We introduce Copter - an intelligent travel assistant that evaluates multi-modal travel alternatives to find a plan that is acceptable to a person given their context and preferences. We propose a formulation for acceptable planning that brings together ideas from AI, machine learning, and economics. This formulation has been incorporated in Copter that produces acceptable plans in real-time. We adopt a novel empirical evaluation framework that combines human decision data with a high fidelity multi-modal transportation simulation to demonstrate a 4% energy reduction and 20% delay reduction in a realistic deployment scenario in Los Angeles, California, USA.
This article is part of the special track on AI and Society.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.1.11352</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Artificial intelligence ; Machine learning ; Reduction ; Transportation energy</subject><ispartof>The Journal of artificial intelligence research, 2019-01, Vol.66, p.555-587</ispartof><rights>2019. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-d70eb04a3d341700dca7e6f99172255866875c73803ac90fc179ed8c389e38e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Mohan, Shiwali</creatorcontrib><creatorcontrib>Rakha, Hesham</creatorcontrib><creatorcontrib>Klenk, Matt</creatorcontrib><title>Acceptable Planning: Influencing Individual Behavior to Reduce Transportation Energy Expenditure of a City</title><title>The Journal of artificial intelligence research</title><description>Our research aims at developing intelligent systems to reduce the transportation-related energy expenditure of a large city by influencing individual behavior. We introduce Copter - an intelligent travel assistant that evaluates multi-modal travel alternatives to find a plan that is acceptable to a person given their context and preferences. We propose a formulation for acceptable planning that brings together ideas from AI, machine learning, and economics. This formulation has been incorporated in Copter that produces acceptable plans in real-time. We adopt a novel empirical evaluation framework that combines human decision data with a high fidelity multi-modal transportation simulation to demonstrate a 4% energy reduction and 20% delay reduction in a realistic deployment scenario in Los Angeles, California, USA.
This article is part of the special track on AI and Society.</description><subject>Artificial intelligence</subject><subject>Machine learning</subject><subject>Reduction</subject><subject>Transportation energy</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE9LwzAYxoMoOKc3P0DAq51J0zaNtzmqDgaKzHPI0rczpSY1TYf79mbOg6f3eeH5Az-ErimZ0YKyu1YZP6MzSlmenqAJJbxIBM_56T99ji6GoSWEiiwtJ6idaw19UJsO8GunrDV2e4-XtulGsDo-UddmZ-pRdfgBPtTOOI-Dw29Qjxrw2is79M4HFYyzuLLgt3tcffcQY2H0gF2DFV6YsL9EZ43qBrj6u1P0_litF8_J6uVpuZivEp0WLCQ1J7AhmWI1yygnpNaKQ9EIQXma5nlZFCXPNWclYUoL0mjKBdSlZqUAVkLGpujm2Nt79zXCEGTrRm_jpIz5jGSRVRFdt0eX9m4YPDSy9-ZT-b2kRB5oygNNSeUvTfYDTqRojg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mohan, Shiwali</creator><creator>Rakha, Hesham</creator><creator>Klenk, Matt</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190101</creationdate><title>Acceptable Planning: Influencing Individual Behavior to Reduce Transportation Energy Expenditure of a City</title><author>Mohan, Shiwali ; Rakha, Hesham ; Klenk, Matt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-d70eb04a3d341700dca7e6f99172255866875c73803ac90fc179ed8c389e38e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Machine learning</topic><topic>Reduction</topic><topic>Transportation energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan, Shiwali</creatorcontrib><creatorcontrib>Rakha, Hesham</creatorcontrib><creatorcontrib>Klenk, Matt</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohan, Shiwali</au><au>Rakha, Hesham</au><au>Klenk, Matt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceptable Planning: Influencing Individual Behavior to Reduce Transportation Energy Expenditure of a City</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>66</volume><spage>555</spage><epage>587</epage><pages>555-587</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>Our research aims at developing intelligent systems to reduce the transportation-related energy expenditure of a large city by influencing individual behavior. We introduce Copter - an intelligent travel assistant that evaluates multi-modal travel alternatives to find a plan that is acceptable to a person given their context and preferences. We propose a formulation for acceptable planning that brings together ideas from AI, machine learning, and economics. This formulation has been incorporated in Copter that produces acceptable plans in real-time. We adopt a novel empirical evaluation framework that combines human decision data with a high fidelity multi-modal transportation simulation to demonstrate a 4% energy reduction and 20% delay reduction in a realistic deployment scenario in Los Angeles, California, USA.
This article is part of the special track on AI and Society.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.1.11352</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9757 |
ispartof | The Journal of artificial intelligence research, 2019-01, Vol.66, p.555-587 |
issn | 1076-9757 1076-9757 1943-5037 |
language | eng |
recordid | cdi_proquest_journals_2554041616 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals |
subjects | Artificial intelligence Machine learning Reduction Transportation energy |
title | Acceptable Planning: Influencing Individual Behavior to Reduce Transportation Energy Expenditure of a City |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceptable%20Planning:%20Influencing%20Individual%20Behavior%20to%20Reduce%20Transportation%20Energy%20Expenditure%20of%20a%20City&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Mohan,%20Shiwali&rft.date=2019-01-01&rft.volume=66&rft.spage=555&rft.epage=587&rft.pages=555-587&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.1.11352&rft_dat=%3Cproquest_cross%3E2554041616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554041616&rft_id=info:pmid/&rfr_iscdi=true |