An automated in-situ polymerisation procedure for multi-functional cyanate ester resins via ring formation
Molecular dynamics simulations are valuable tools in enabling us to link molecular-level structure to macroscopic properties of new polymer-based materials. However, molecular simulation of cyanate ester polymers presents specific challenges, as a few credible procedures that captures ring formation...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2021-07, Vol.228, p.123938, Article 123938 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 123938 |
container_title | Polymer (Guilford) |
container_volume | 228 |
creator | Demir, Baris Hamerton, Ian |
description | Molecular dynamics simulations are valuable tools in enabling us to link molecular-level structure to macroscopic properties of new polymer-based materials. However, molecular simulation of cyanate ester polymers presents specific challenges, as a few credible procedures that captures ring formation is available. Despite the presence of previous attempts to this end, an automated process, that is easy to reproduce and adaptable for modelling cyanate esters, is still lacking. Herein, a robust and reproducible triazine ring formation procedure to reliably model, test, and tune polymer structures for use in molecular simulations is reported. In addition to being entirely reproducible, this procedure provides sufficient details to be applied to model polymers generated via ring formation between cyanate groups. Amongst our developments, key features include a reliable process for generating and equilibrating liquid samples to be polymerised, a robust ring formation algorithm, and establishment of a clear protocol to predict macroscopic properties such as glass transition temperature and Young's modulus of the polymerised samples. Predicted macroscopic properties agreed well with available experimental data. Our procedure provides a perfect platform for the process of modelling cyanate esters and can be easily adapted to generate porous polymers such as covalent organic frameworks.
[Display omitted]
•A computational procedure was developed to model, test and tune cyanate ester resins.•Ring formation between cyanate ester monomers was captured on-the-fly.•Thermo-mechanical properties were predicted as a function of degree of polymerisation.•Cyanate ester monomers with varying number of aromatic rings showed distinct properties. |
doi_str_mv | 10.1016/j.polymer.2021.123938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2553855834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386121005619</els_id><sourcerecordid>2553855834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ed5f3261e2a1eb613125be5830ab0785ae0b4e120a240dea3fe91cef269d93543</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguTUfTbc9ybL4BQte9BzSdCopbbIm6cL-e1O7d09zmHkf3nkQuqckp4SWj31-cMNpBJ8zwmhOGa95dYFWtNrwjLGaXqIVIZxlvCrpNboJoSeEMMGKFeq3FqspulFFaLGxWTBxwmeeCSoaZ_HBOw3t5AF3zuNxGqLJusnqeakGrE_KpjiGEMFjD8HYgI9GYW_s9xwZ_zC36KpTQ4C781yjr5fnz91btv94fd9t95nmfBMzaEXHWUmBKQpNSTllogFRcaIasqmEAtIUQBlRrCAtKN5BTTV0rKzbmouCr9HDwk21f6ZUSvZu8qlokEwIXonEmq_EcqW9C8FDJw_ejMqfJCVy1ip7edYgZ61y0ZpyT0sO0gtHk7ZBG7DJj_Ggo2yd-YfwC2rXheI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553855834</pqid></control><display><type>article</type><title>An automated in-situ polymerisation procedure for multi-functional cyanate ester resins via ring formation</title><source>Elsevier ScienceDirect Journals</source><creator>Demir, Baris ; Hamerton, Ian</creator><creatorcontrib>Demir, Baris ; Hamerton, Ian</creatorcontrib><description>Molecular dynamics simulations are valuable tools in enabling us to link molecular-level structure to macroscopic properties of new polymer-based materials. However, molecular simulation of cyanate ester polymers presents specific challenges, as a few credible procedures that captures ring formation is available. Despite the presence of previous attempts to this end, an automated process, that is easy to reproduce and adaptable for modelling cyanate esters, is still lacking. Herein, a robust and reproducible triazine ring formation procedure to reliably model, test, and tune polymer structures for use in molecular simulations is reported. In addition to being entirely reproducible, this procedure provides sufficient details to be applied to model polymers generated via ring formation between cyanate groups. Amongst our developments, key features include a reliable process for generating and equilibrating liquid samples to be polymerised, a robust ring formation algorithm, and establishment of a clear protocol to predict macroscopic properties such as glass transition temperature and Young's modulus of the polymerised samples. Predicted macroscopic properties agreed well with available experimental data. Our procedure provides a perfect platform for the process of modelling cyanate esters and can be easily adapted to generate porous polymers such as covalent organic frameworks.
[Display omitted]
•A computational procedure was developed to model, test and tune cyanate ester resins.•Ring formation between cyanate ester monomers was captured on-the-fly.•Thermo-mechanical properties were predicted as a function of degree of polymerisation.•Cyanate ester monomers with varying number of aromatic rings showed distinct properties.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2021.123938</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Automation ; Cyanate esters ; Cyanates ; Esters ; Glass transition temperature ; Mechanical properties ; Model testing ; Modelling ; Modulus of elasticity ; Molecular dynamics ; Molecular dynamics simulations ; Molecular structure ; Polymerization ; Polymers ; Resins ; Ring formation reactions ; Robustness ; Simulation ; Thermo-mechanical properties ; Transition temperatures ; Triazine</subject><ispartof>Polymer (Guilford), 2021-07, Vol.228, p.123938, Article 123938</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 16, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ed5f3261e2a1eb613125be5830ab0785ae0b4e120a240dea3fe91cef269d93543</citedby><cites>FETCH-LOGICAL-c337t-ed5f3261e2a1eb613125be5830ab0785ae0b4e120a240dea3fe91cef269d93543</cites><orcidid>0000-0003-4329-235X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032386121005619$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Demir, Baris</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><title>An automated in-situ polymerisation procedure for multi-functional cyanate ester resins via ring formation</title><title>Polymer (Guilford)</title><description>Molecular dynamics simulations are valuable tools in enabling us to link molecular-level structure to macroscopic properties of new polymer-based materials. However, molecular simulation of cyanate ester polymers presents specific challenges, as a few credible procedures that captures ring formation is available. Despite the presence of previous attempts to this end, an automated process, that is easy to reproduce and adaptable for modelling cyanate esters, is still lacking. Herein, a robust and reproducible triazine ring formation procedure to reliably model, test, and tune polymer structures for use in molecular simulations is reported. In addition to being entirely reproducible, this procedure provides sufficient details to be applied to model polymers generated via ring formation between cyanate groups. Amongst our developments, key features include a reliable process for generating and equilibrating liquid samples to be polymerised, a robust ring formation algorithm, and establishment of a clear protocol to predict macroscopic properties such as glass transition temperature and Young's modulus of the polymerised samples. Predicted macroscopic properties agreed well with available experimental data. Our procedure provides a perfect platform for the process of modelling cyanate esters and can be easily adapted to generate porous polymers such as covalent organic frameworks.
[Display omitted]
•A computational procedure was developed to model, test and tune cyanate ester resins.•Ring formation between cyanate ester monomers was captured on-the-fly.•Thermo-mechanical properties were predicted as a function of degree of polymerisation.•Cyanate ester monomers with varying number of aromatic rings showed distinct properties.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Cyanate esters</subject><subject>Cyanates</subject><subject>Esters</subject><subject>Glass transition temperature</subject><subject>Mechanical properties</subject><subject>Model testing</subject><subject>Modelling</subject><subject>Modulus of elasticity</subject><subject>Molecular dynamics</subject><subject>Molecular dynamics simulations</subject><subject>Molecular structure</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Resins</subject><subject>Ring formation reactions</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Thermo-mechanical properties</subject><subject>Transition temperatures</subject><subject>Triazine</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguTUfTbc9ybL4BQte9BzSdCopbbIm6cL-e1O7d09zmHkf3nkQuqckp4SWj31-cMNpBJ8zwmhOGa95dYFWtNrwjLGaXqIVIZxlvCrpNboJoSeEMMGKFeq3FqspulFFaLGxWTBxwmeeCSoaZ_HBOw3t5AF3zuNxGqLJusnqeakGrE_KpjiGEMFjD8HYgI9GYW_s9xwZ_zC36KpTQ4C781yjr5fnz91btv94fd9t95nmfBMzaEXHWUmBKQpNSTllogFRcaIasqmEAtIUQBlRrCAtKN5BTTV0rKzbmouCr9HDwk21f6ZUSvZu8qlokEwIXonEmq_EcqW9C8FDJw_ejMqfJCVy1ip7edYgZ61y0ZpyT0sO0gtHk7ZBG7DJj_Ggo2yd-YfwC2rXheI</recordid><startdate>20210716</startdate><enddate>20210716</enddate><creator>Demir, Baris</creator><creator>Hamerton, Ian</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4329-235X</orcidid></search><sort><creationdate>20210716</creationdate><title>An automated in-situ polymerisation procedure for multi-functional cyanate ester resins via ring formation</title><author>Demir, Baris ; Hamerton, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ed5f3261e2a1eb613125be5830ab0785ae0b4e120a240dea3fe91cef269d93543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Cyanate esters</topic><topic>Cyanates</topic><topic>Esters</topic><topic>Glass transition temperature</topic><topic>Mechanical properties</topic><topic>Model testing</topic><topic>Modelling</topic><topic>Modulus of elasticity</topic><topic>Molecular dynamics</topic><topic>Molecular dynamics simulations</topic><topic>Molecular structure</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Resins</topic><topic>Ring formation reactions</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Thermo-mechanical properties</topic><topic>Transition temperatures</topic><topic>Triazine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demir, Baris</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demir, Baris</au><au>Hamerton, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automated in-situ polymerisation procedure for multi-functional cyanate ester resins via ring formation</atitle><jtitle>Polymer (Guilford)</jtitle><date>2021-07-16</date><risdate>2021</risdate><volume>228</volume><spage>123938</spage><pages>123938-</pages><artnum>123938</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Molecular dynamics simulations are valuable tools in enabling us to link molecular-level structure to macroscopic properties of new polymer-based materials. However, molecular simulation of cyanate ester polymers presents specific challenges, as a few credible procedures that captures ring formation is available. Despite the presence of previous attempts to this end, an automated process, that is easy to reproduce and adaptable for modelling cyanate esters, is still lacking. Herein, a robust and reproducible triazine ring formation procedure to reliably model, test, and tune polymer structures for use in molecular simulations is reported. In addition to being entirely reproducible, this procedure provides sufficient details to be applied to model polymers generated via ring formation between cyanate groups. Amongst our developments, key features include a reliable process for generating and equilibrating liquid samples to be polymerised, a robust ring formation algorithm, and establishment of a clear protocol to predict macroscopic properties such as glass transition temperature and Young's modulus of the polymerised samples. Predicted macroscopic properties agreed well with available experimental data. Our procedure provides a perfect platform for the process of modelling cyanate esters and can be easily adapted to generate porous polymers such as covalent organic frameworks.
[Display omitted]
•A computational procedure was developed to model, test and tune cyanate ester resins.•Ring formation between cyanate ester monomers was captured on-the-fly.•Thermo-mechanical properties were predicted as a function of degree of polymerisation.•Cyanate ester monomers with varying number of aromatic rings showed distinct properties.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2021.123938</doi><orcidid>https://orcid.org/0000-0003-4329-235X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2021-07, Vol.228, p.123938, Article 123938 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_journals_2553855834 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Automation Cyanate esters Cyanates Esters Glass transition temperature Mechanical properties Model testing Modelling Modulus of elasticity Molecular dynamics Molecular dynamics simulations Molecular structure Polymerization Polymers Resins Ring formation reactions Robustness Simulation Thermo-mechanical properties Transition temperatures Triazine |
title | An automated in-situ polymerisation procedure for multi-functional cyanate ester resins via ring formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automated%20in-situ%20polymerisation%20procedure%20for%20multi-functional%20cyanate%20ester%20resins%20via%20ring%20formation&rft.jtitle=Polymer%20(Guilford)&rft.au=Demir,%20Baris&rft.date=2021-07-16&rft.volume=228&rft.spage=123938&rft.pages=123938-&rft.artnum=123938&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2021.123938&rft_dat=%3Cproquest_cross%3E2553855834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553855834&rft_id=info:pmid/&rft_els_id=S0032386121005619&rfr_iscdi=true |