UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding

With the recent boom in unmanned aerial vehicle (UAV) technology, many UAV applications involving complex and risky tasks in military and civilian fields have emerged, such as military strikes and disaster monitoring. Task allocation for UAVs is the process of planning the division of work among UAV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shanghai jiao tong da xue xue bao 2021, Vol.26 (4), p.431-445
Hauptverfasser: Jin, Yudong, Feng, Jiabo, Zhang, Weijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue 4
container_start_page 431
container_title Shanghai jiao tong da xue xue bao
container_volume 26
creator Jin, Yudong
Feng, Jiabo
Zhang, Weijun
description With the recent boom in unmanned aerial vehicle (UAV) technology, many UAV applications involving complex and risky tasks in military and civilian fields have emerged, such as military strikes and disaster monitoring. Task allocation for UAVs is the process of planning the division of work among UAVs, controlled from ground stations by human operators. This study formulates the UAV task-allocation problem as an extended traveling salesman problem and presents a novel UAV task-allocation model for complex air concentration monitoring tasks. Then, an optimized non-dominated sorting genetic algorithm III (NSGA-III) based on a twin-exclusion mechanism, hierarchical objective-domination operator, and segmented gene encoding (i.e., NSGA-III-TEHOD) is developed to solve complex task-allocation problems involving multiple UAVs, hierarchical objectives, obstacles, and ambient wind. The algorithm is tested in several simulations, and the results demonstrate that the new algorithm outperforms NSGA-III, non-dominated sorting genetic algorithm II (NSGA-II), and genetic algorithm (GA) in terms of efficiency of global convergence and early maturation prevention and is available for the hierarchical objective-optimization problems.
doi_str_mv 10.1007/s12204-021-2269-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2553832311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553832311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2315-758b0175715e07c862e36744bb52d209178192b52be07be969d2436d342c8b093</originalsourceid><addsrcrecordid>eNp1kLtOwzAYhSMEEqXwAGyWmA2-xEk8RlVpI7V0aMtqJY6TuiROsVNuD8Bz4ypITEz_7Tvnl04Q3GJ0jxGKHxwmBIUQEQwJiThkZ8EIc85ggpPk3PceghjH5DK4cm6PUIgo5aPge5s-g03uXkDaNJ3Me90ZUHUWzLWyuZU7LfMGLI-NPxR7JXv9psDq0OtWfw2wNmDStYdGffhqSn1aOrB12tRg2ZW60qoET-tZCrMsA--634G1qltler-fGukRU18HF1XeOHXzW8fB9nG6mczhYjXLJukCSkIxgzFLCoRjFmOmUCyTiCgaxWFYFIyUBHEcJ5gTPxT-XCge8ZKENCppSKRXcjoO7gbfg-1ej8r1Yt8drfEvBWGMJtS_wZ7CAyVt55xVlThY3eb2U2AkTkmKIW7h4xanuAXzGjJonGdNreyf8_-iH9MggY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553832311</pqid></control><display><type>article</type><title>UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jin, Yudong ; Feng, Jiabo ; Zhang, Weijun</creator><creatorcontrib>Jin, Yudong ; Feng, Jiabo ; Zhang, Weijun</creatorcontrib><description>With the recent boom in unmanned aerial vehicle (UAV) technology, many UAV applications involving complex and risky tasks in military and civilian fields have emerged, such as military strikes and disaster monitoring. Task allocation for UAVs is the process of planning the division of work among UAVs, controlled from ground stations by human operators. This study formulates the UAV task-allocation problem as an extended traveling salesman problem and presents a novel UAV task-allocation model for complex air concentration monitoring tasks. Then, an optimized non-dominated sorting genetic algorithm III (NSGA-III) based on a twin-exclusion mechanism, hierarchical objective-domination operator, and segmented gene encoding (i.e., NSGA-III-TEHOD) is developed to solve complex task-allocation problems involving multiple UAVs, hierarchical objectives, obstacles, and ambient wind. The algorithm is tested in several simulations, and the results demonstrate that the new algorithm outperforms NSGA-III, non-dominated sorting genetic algorithm II (NSGA-II), and genetic algorithm (GA) in terms of efficiency of global convergence and early maturation prevention and is available for the hierarchical objective-optimization problems.</description><identifier>ISSN: 1007-1172</identifier><identifier>EISSN: 1995-8188</identifier><identifier>DOI: 10.1007/s12204-021-2269-5</identifier><language>eng</language><publisher>Shanghai: Shanghai Jiaotong University Press</publisher><subject>Air monitoring ; Algorithms ; Architecture ; Computer Science ; Electrical Engineering ; Engineering ; Genetic algorithms ; Ground stations ; Life Sciences ; Materials Science ; Multiple objective analysis ; Optimization ; Sorting algorithms ; Task complexity ; Traveling salesman problem ; Unmanned aerial vehicles</subject><ispartof>Shanghai jiao tong da xue xue bao, 2021, Vol.26 (4), p.431-445</ispartof><rights>Shanghai Jiao Tong University and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Shanghai Jiao Tong University and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2315-758b0175715e07c862e36744bb52d209178192b52be07be969d2436d342c8b093</citedby><cites>FETCH-LOGICAL-c2315-758b0175715e07c862e36744bb52d209178192b52be07be969d2436d342c8b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12204-021-2269-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12204-021-2269-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jin, Yudong</creatorcontrib><creatorcontrib>Feng, Jiabo</creatorcontrib><creatorcontrib>Zhang, Weijun</creatorcontrib><title>UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding</title><title>Shanghai jiao tong da xue xue bao</title><addtitle>J. Shanghai Jiaotong Univ. (Sci.)</addtitle><description>With the recent boom in unmanned aerial vehicle (UAV) technology, many UAV applications involving complex and risky tasks in military and civilian fields have emerged, such as military strikes and disaster monitoring. Task allocation for UAVs is the process of planning the division of work among UAVs, controlled from ground stations by human operators. This study formulates the UAV task-allocation problem as an extended traveling salesman problem and presents a novel UAV task-allocation model for complex air concentration monitoring tasks. Then, an optimized non-dominated sorting genetic algorithm III (NSGA-III) based on a twin-exclusion mechanism, hierarchical objective-domination operator, and segmented gene encoding (i.e., NSGA-III-TEHOD) is developed to solve complex task-allocation problems involving multiple UAVs, hierarchical objectives, obstacles, and ambient wind. The algorithm is tested in several simulations, and the results demonstrate that the new algorithm outperforms NSGA-III, non-dominated sorting genetic algorithm II (NSGA-II), and genetic algorithm (GA) in terms of efficiency of global convergence and early maturation prevention and is available for the hierarchical objective-optimization problems.</description><subject>Air monitoring</subject><subject>Algorithms</subject><subject>Architecture</subject><subject>Computer Science</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Ground stations</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Sorting algorithms</subject><subject>Task complexity</subject><subject>Traveling salesman problem</subject><subject>Unmanned aerial vehicles</subject><issn>1007-1172</issn><issn>1995-8188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAYhSMEEqXwAGyWmA2-xEk8RlVpI7V0aMtqJY6TuiROsVNuD8Bz4ypITEz_7Tvnl04Q3GJ0jxGKHxwmBIUQEQwJiThkZ8EIc85ggpPk3PceghjH5DK4cm6PUIgo5aPge5s-g03uXkDaNJ3Me90ZUHUWzLWyuZU7LfMGLI-NPxR7JXv9psDq0OtWfw2wNmDStYdGffhqSn1aOrB12tRg2ZW60qoET-tZCrMsA--634G1qltler-fGukRU18HF1XeOHXzW8fB9nG6mczhYjXLJukCSkIxgzFLCoRjFmOmUCyTiCgaxWFYFIyUBHEcJ5gTPxT-XCge8ZKENCppSKRXcjoO7gbfg-1ej8r1Yt8drfEvBWGMJtS_wZ7CAyVt55xVlThY3eb2U2AkTkmKIW7h4xanuAXzGjJonGdNreyf8_-iH9MggY4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jin, Yudong</creator><creator>Feng, Jiabo</creator><creator>Zhang, Weijun</creator><general>Shanghai Jiaotong University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2021</creationdate><title>UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding</title><author>Jin, Yudong ; Feng, Jiabo ; Zhang, Weijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2315-758b0175715e07c862e36744bb52d209178192b52be07be969d2436d342c8b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air monitoring</topic><topic>Algorithms</topic><topic>Architecture</topic><topic>Computer Science</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Ground stations</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Sorting algorithms</topic><topic>Task complexity</topic><topic>Traveling salesman problem</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yudong</creatorcontrib><creatorcontrib>Feng, Jiabo</creatorcontrib><creatorcontrib>Zhang, Weijun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Shanghai jiao tong da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yudong</au><au>Feng, Jiabo</au><au>Zhang, Weijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding</atitle><jtitle>Shanghai jiao tong da xue xue bao</jtitle><stitle>J. Shanghai Jiaotong Univ. (Sci.)</stitle><date>2021</date><risdate>2021</risdate><volume>26</volume><issue>4</issue><spage>431</spage><epage>445</epage><pages>431-445</pages><issn>1007-1172</issn><eissn>1995-8188</eissn><abstract>With the recent boom in unmanned aerial vehicle (UAV) technology, many UAV applications involving complex and risky tasks in military and civilian fields have emerged, such as military strikes and disaster monitoring. Task allocation for UAVs is the process of planning the division of work among UAVs, controlled from ground stations by human operators. This study formulates the UAV task-allocation problem as an extended traveling salesman problem and presents a novel UAV task-allocation model for complex air concentration monitoring tasks. Then, an optimized non-dominated sorting genetic algorithm III (NSGA-III) based on a twin-exclusion mechanism, hierarchical objective-domination operator, and segmented gene encoding (i.e., NSGA-III-TEHOD) is developed to solve complex task-allocation problems involving multiple UAVs, hierarchical objectives, obstacles, and ambient wind. The algorithm is tested in several simulations, and the results demonstrate that the new algorithm outperforms NSGA-III, non-dominated sorting genetic algorithm II (NSGA-II), and genetic algorithm (GA) in terms of efficiency of global convergence and early maturation prevention and is available for the hierarchical objective-optimization problems.</abstract><cop>Shanghai</cop><pub>Shanghai Jiaotong University Press</pub><doi>10.1007/s12204-021-2269-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-1172
ispartof Shanghai jiao tong da xue xue bao, 2021, Vol.26 (4), p.431-445
issn 1007-1172
1995-8188
language eng
recordid cdi_proquest_journals_2553832311
source SpringerLink Journals - AutoHoldings
subjects Air monitoring
Algorithms
Architecture
Computer Science
Electrical Engineering
Engineering
Genetic algorithms
Ground stations
Life Sciences
Materials Science
Multiple objective analysis
Optimization
Sorting algorithms
Task complexity
Traveling salesman problem
Unmanned aerial vehicles
title UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV%20Task%20Allocation%20for%20Hierarchical%20Multiobjective%20Optimization%20in%20Complex%20Conditions%20Using%20Modified%20NSGA-III%20with%20Segmented%20Encoding&rft.jtitle=Shanghai%20jiao%20tong%20da%20xue%20xue%20bao&rft.au=Jin,%20Yudong&rft.date=2021&rft.volume=26&rft.issue=4&rft.spage=431&rft.epage=445&rft.pages=431-445&rft.issn=1007-1172&rft.eissn=1995-8188&rft_id=info:doi/10.1007/s12204-021-2269-5&rft_dat=%3Cproquest_cross%3E2553832311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553832311&rft_id=info:pmid/&rfr_iscdi=true