3-D Terahertz Imaging Based on Piecewise Constant Doppler Algorithm and Step- Frequency Continuous-Wave Signaling

A novel 3-D time-domain terahertz (THz) imaging system based on piecewise constant Doppler (PCD) algorithm and step-frequency continuous-wave (SFCW) signaling is proposed in this article. First, the SFCW THz imaging system configuration and the Gaussian beam propagation model are introduced. Then, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2021-08, Vol.59 (8), p.6771-6783
Hauptverfasser: Nan, Yijiang, Huang, Xiaojing, Gao, Xiang, Guo, Y. Jay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel 3-D time-domain terahertz (THz) imaging system based on piecewise constant Doppler (PCD) algorithm and step-frequency continuous-wave (SFCW) signaling is proposed in this article. First, the SFCW THz imaging system configuration and the Gaussian beam propagation model are introduced. Then, the conventional time-domain correlation imaging algorithm is reviewed, and the closed-form expression of its point spread function (PSF) is derived to quantify the range and lateral resolutions. To reduce the computational complexity, a 2-D recursive imaging process based on the plane approximation of the range surface is proposed, by which the original PCD algorithm is extended for 3-D imaging with 2-D aperture synthesis. The 3-D PCD imaging principle, implementation, and complexity analysis are discussed afterward. Finally, simulation and experimental results are provided to validate the theoretical analysis of the 3-D time-domain THz imaging and demonstrate the high quality of the proposed imaging algorithm at a low computational cost.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2020.3031917