Low-Cost and Efficient Thermal Calibration Scheme for MEMS Triaxial Accelerometer
In view of the large thermal drift of microelectromechanical system (MEMS) triaxial accelerometer and the high cost of traditional calibration schemes, this article proposes a low-cost and efficient thermal drift calibration scheme combining the parameter-correction method and the proposed least squ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 70 |
creator | Xu, Tongxu Xu, Xiang Xu, Dacheng Zou, Zelan Zhao, Heming |
description | In view of the large thermal drift of microelectromechanical system (MEMS) triaxial accelerometer and the high cost of traditional calibration schemes, this article proposes a low-cost and efficient thermal drift calibration scheme combining the parameter-correction method and the proposed least squares method based on the nine-parameter model. In this scheme, first, the parameter-correction method is applied to the data collected under the heating condition to obtain the thermal drift of calibrated parameters with constant error. The least squares method is then used to obtain the parameters at a temperature T_{c} . Then, the two sets of parameters are combined, and the constant offset error is removed. Finally, higher precision thermal drift curves of the parameters are obtained after smoothing and filtering. One thousand simulations show that the previously proposed parameter-correction method has consistent accuracy and can obtain accurate drift trends of the triaxial accelerometer parameters. The actual triaxial accelerometer thermal drift calibration experiment shows that when the temperature rises by 22 °C, the sensor data converted by the parameters obtained by the proposed scheme can effectively reduce the drift. The drifts of x - and y -axes are reduced from −19.2 and 11.6 mg to −0.7 and −0.6 mg, respectively. The Z -axis drift is reduced from −23.9 to 3.5 mg. This proves the feasibility of the method and scheme proposed in this article. |
doi_str_mv | 10.1109/TIM.2021.3096290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2553591257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9481210</ieee_id><sourcerecordid>2553591257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5f7aa911900faae9141f01d4b380acfba3444118a709b0278e0d683e23e56d093</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFb3gpsB16nvzUeSWZZStdAi0rgOk-QNTUkydRJR_70pLa7u5tx74TB2jzBDBPOUrTYzAQJnEkwsDFywCWqdRCaOxSWbAGAaGaXja3bT93sASGKVTNj72n9HC98P3HYVXzpXlzV1A892FFrb8IVt6iLYofYd35Y7aok7H_hmudnyLNT2px6heVlSQ8G3NFC4ZVfONj3dnXPKPp6X2eI1Wr-9rBbzdVQKg0OkXWKtQTQAzloyqNABVqqQKdjSFVYqpRBTm4ApQCQpQRWnkoQkHVdg5JQ9nnYPwX9-UT_ke_8VuvEyF1pLbVDoZKTgRJXB930glx9C3drwmyPkR3H5KC4_isvP4sbKw6lSE9E_blSKAkH-AaHIZ9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553591257</pqid></control><display><type>article</type><title>Low-Cost and Efficient Thermal Calibration Scheme for MEMS Triaxial Accelerometer</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Tongxu ; Xu, Xiang ; Xu, Dacheng ; Zou, Zelan ; Zhao, Heming</creator><creatorcontrib>Xu, Tongxu ; Xu, Xiang ; Xu, Dacheng ; Zou, Zelan ; Zhao, Heming</creatorcontrib><description><![CDATA[In view of the large thermal drift of microelectromechanical system (MEMS) triaxial accelerometer and the high cost of traditional calibration schemes, this article proposes a low-cost and efficient thermal drift calibration scheme combining the parameter-correction method and the proposed least squares method based on the nine-parameter model. In this scheme, first, the parameter-correction method is applied to the data collected under the heating condition to obtain the thermal drift of calibrated parameters with constant error. The least squares method is then used to obtain the parameters at a temperature <inline-formula> <tex-math notation="LaTeX">T_{c} </tex-math></inline-formula>. Then, the two sets of parameters are combined, and the constant offset error is removed. Finally, higher precision thermal drift curves of the parameters are obtained after smoothing and filtering. One thousand simulations show that the previously proposed parameter-correction method has consistent accuracy and can obtain accurate drift trends of the triaxial accelerometer parameters. The actual triaxial accelerometer thermal drift calibration experiment shows that when the temperature rises by 22 °C, the sensor data converted by the parameters obtained by the proposed scheme can effectively reduce the drift. The drifts of <inline-formula> <tex-math notation="LaTeX">x </tex-math></inline-formula>- and <inline-formula> <tex-math notation="LaTeX">y </tex-math></inline-formula>-axes are reduced from −19.2 and 11.6 mg to −0.7 and −0.6 mg, respectively. The <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-axis drift is reduced from −23.9 to 3.5 mg. This proves the feasibility of the method and scheme proposed in this article.]]></description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3096290</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Calibration ; Data models ; Drift ; least square method ; Least squares method ; Low cost ; Microelectromechanical systems ; Micromechanical devices ; parameter-correction method ; Parameters ; Temperature distribution ; Temperature sensors ; thermal drift ; Thermal stability ; triaxial accelerometer</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5f7aa911900faae9141f01d4b380acfba3444118a709b0278e0d683e23e56d093</citedby><cites>FETCH-LOGICAL-c291t-5f7aa911900faae9141f01d4b380acfba3444118a709b0278e0d683e23e56d093</cites><orcidid>0000-0002-1961-0031 ; 0000-0002-8312-3350 ; 0000-0001-6902-9897 ; 0000-0002-1614-9606 ; 0000-0001-9947-7754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9481210$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9481210$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Tongxu</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Xu, Dacheng</creatorcontrib><creatorcontrib>Zou, Zelan</creatorcontrib><creatorcontrib>Zhao, Heming</creatorcontrib><title>Low-Cost and Efficient Thermal Calibration Scheme for MEMS Triaxial Accelerometer</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description><![CDATA[In view of the large thermal drift of microelectromechanical system (MEMS) triaxial accelerometer and the high cost of traditional calibration schemes, this article proposes a low-cost and efficient thermal drift calibration scheme combining the parameter-correction method and the proposed least squares method based on the nine-parameter model. In this scheme, first, the parameter-correction method is applied to the data collected under the heating condition to obtain the thermal drift of calibrated parameters with constant error. The least squares method is then used to obtain the parameters at a temperature <inline-formula> <tex-math notation="LaTeX">T_{c} </tex-math></inline-formula>. Then, the two sets of parameters are combined, and the constant offset error is removed. Finally, higher precision thermal drift curves of the parameters are obtained after smoothing and filtering. One thousand simulations show that the previously proposed parameter-correction method has consistent accuracy and can obtain accurate drift trends of the triaxial accelerometer parameters. The actual triaxial accelerometer thermal drift calibration experiment shows that when the temperature rises by 22 °C, the sensor data converted by the parameters obtained by the proposed scheme can effectively reduce the drift. The drifts of <inline-formula> <tex-math notation="LaTeX">x </tex-math></inline-formula>- and <inline-formula> <tex-math notation="LaTeX">y </tex-math></inline-formula>-axes are reduced from −19.2 and 11.6 mg to −0.7 and −0.6 mg, respectively. The <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-axis drift is reduced from −23.9 to 3.5 mg. This proves the feasibility of the method and scheme proposed in this article.]]></description><subject>Accelerometers</subject><subject>Calibration</subject><subject>Data models</subject><subject>Drift</subject><subject>least square method</subject><subject>Least squares method</subject><subject>Low cost</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>parameter-correction method</subject><subject>Parameters</subject><subject>Temperature distribution</subject><subject>Temperature sensors</subject><subject>thermal drift</subject><subject>Thermal stability</subject><subject>triaxial accelerometer</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFb3gpsB16nvzUeSWZZStdAi0rgOk-QNTUkydRJR_70pLa7u5tx74TB2jzBDBPOUrTYzAQJnEkwsDFywCWqdRCaOxSWbAGAaGaXja3bT93sASGKVTNj72n9HC98P3HYVXzpXlzV1A892FFrb8IVt6iLYofYd35Y7aok7H_hmudnyLNT2px6heVlSQ8G3NFC4ZVfONj3dnXPKPp6X2eI1Wr-9rBbzdVQKg0OkXWKtQTQAzloyqNABVqqQKdjSFVYqpRBTm4ApQCQpQRWnkoQkHVdg5JQ9nnYPwX9-UT_ke_8VuvEyF1pLbVDoZKTgRJXB930glx9C3drwmyPkR3H5KC4_isvP4sbKw6lSE9E_blSKAkH-AaHIZ9w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xu, Tongxu</creator><creator>Xu, Xiang</creator><creator>Xu, Dacheng</creator><creator>Zou, Zelan</creator><creator>Zhao, Heming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1961-0031</orcidid><orcidid>https://orcid.org/0000-0002-8312-3350</orcidid><orcidid>https://orcid.org/0000-0001-6902-9897</orcidid><orcidid>https://orcid.org/0000-0002-1614-9606</orcidid><orcidid>https://orcid.org/0000-0001-9947-7754</orcidid></search><sort><creationdate>2021</creationdate><title>Low-Cost and Efficient Thermal Calibration Scheme for MEMS Triaxial Accelerometer</title><author>Xu, Tongxu ; Xu, Xiang ; Xu, Dacheng ; Zou, Zelan ; Zhao, Heming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5f7aa911900faae9141f01d4b380acfba3444118a709b0278e0d683e23e56d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerometers</topic><topic>Calibration</topic><topic>Data models</topic><topic>Drift</topic><topic>least square method</topic><topic>Least squares method</topic><topic>Low cost</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>parameter-correction method</topic><topic>Parameters</topic><topic>Temperature distribution</topic><topic>Temperature sensors</topic><topic>thermal drift</topic><topic>Thermal stability</topic><topic>triaxial accelerometer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tongxu</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Xu, Dacheng</creatorcontrib><creatorcontrib>Zou, Zelan</creatorcontrib><creatorcontrib>Zhao, Heming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Tongxu</au><au>Xu, Xiang</au><au>Xu, Dacheng</au><au>Zou, Zelan</au><au>Zhao, Heming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Cost and Efficient Thermal Calibration Scheme for MEMS Triaxial Accelerometer</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract><![CDATA[In view of the large thermal drift of microelectromechanical system (MEMS) triaxial accelerometer and the high cost of traditional calibration schemes, this article proposes a low-cost and efficient thermal drift calibration scheme combining the parameter-correction method and the proposed least squares method based on the nine-parameter model. In this scheme, first, the parameter-correction method is applied to the data collected under the heating condition to obtain the thermal drift of calibrated parameters with constant error. The least squares method is then used to obtain the parameters at a temperature <inline-formula> <tex-math notation="LaTeX">T_{c} </tex-math></inline-formula>. Then, the two sets of parameters are combined, and the constant offset error is removed. Finally, higher precision thermal drift curves of the parameters are obtained after smoothing and filtering. One thousand simulations show that the previously proposed parameter-correction method has consistent accuracy and can obtain accurate drift trends of the triaxial accelerometer parameters. The actual triaxial accelerometer thermal drift calibration experiment shows that when the temperature rises by 22 °C, the sensor data converted by the parameters obtained by the proposed scheme can effectively reduce the drift. The drifts of <inline-formula> <tex-math notation="LaTeX">x </tex-math></inline-formula>- and <inline-formula> <tex-math notation="LaTeX">y </tex-math></inline-formula>-axes are reduced from −19.2 and 11.6 mg to −0.7 and −0.6 mg, respectively. The <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-axis drift is reduced from −23.9 to 3.5 mg. This proves the feasibility of the method and scheme proposed in this article.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3096290</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1961-0031</orcidid><orcidid>https://orcid.org/0000-0002-8312-3350</orcidid><orcidid>https://orcid.org/0000-0001-6902-9897</orcidid><orcidid>https://orcid.org/0000-0002-1614-9606</orcidid><orcidid>https://orcid.org/0000-0001-9947-7754</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-9 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2553591257 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerometers Calibration Data models Drift least square method Least squares method Low cost Microelectromechanical systems Micromechanical devices parameter-correction method Parameters Temperature distribution Temperature sensors thermal drift Thermal stability triaxial accelerometer |
title | Low-Cost and Efficient Thermal Calibration Scheme for MEMS Triaxial Accelerometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Cost%20and%20Efficient%20Thermal%20Calibration%20Scheme%20for%20MEMS%20Triaxial%20Accelerometer&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Xu,%20Tongxu&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3096290&rft_dat=%3Cproquest_RIE%3E2553591257%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553591257&rft_id=info:pmid/&rft_ieee_id=9481210&rfr_iscdi=true |