MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation

In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-10, Vol.6 (4), p.6497-6504
Hauptverfasser: Kim, Yeong-Hyeon, Shin, Ukcheol, Park, Jinsun, Kweon, In So
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6504
container_issue 4
container_start_page 6497
container_title IEEE robotics and automation letters
container_volume 6
creator Kim, Yeong-Hyeon
Shin, Ukcheol
Park, Jinsun
Kweon, In So
description In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segmentation knowledge from an RGB image segmentation network. We also enhance the generalization capability of our thermal segmentation network with pixel-level domain adaptation bridging day and night thermal image domains. With our framework, a thermal image segmentation network can achieve high performance without any ground-truth labels by exploiting successive multi-spectral knowledge transfers including RGB-to-RGB, RGB-to-Thermal, and Thermal-to-Thermal adaptations. Moreover, we provide a real-world RGB-Thermal semantic segmentation dataset with 950 manually annotated Cityscapes-style ground-truth labels in 19 classes. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed framework quantitatively and qualitatively.
doi_str_mv 10.1109/LRA.2021.3093652
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2553590655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9468936</ieee_id><sourcerecordid>2553590655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-923a0db06805953874964bc5ee7ffe24c5dcca8f8f5e061d8893878f2fc424803</originalsourceid><addsrcrecordid>eNpNkEtLw0AURgdRsNTuBTcB16nzyExm3IXWR6FFsO1SwnRyp6Y0D2cSwX_vlBRxdb_F-e69HIRuCZ4SgtXD8j2bUkzJlGHFBKcXaERZmsYsFeLyX75GE-8PGGPCacoUH6GP1TrezrPHaNUfuzJet2A6p4_RtvZ9C-679FBE86bSZR1lhW473ZVNHdnGRZtPcFVAF5XeQ7SGStddaULYV1AP3A26svroYXKeY7R9ftrMXuPl28tili1jQxXpYkWZxsUOC4m54kymiRLJznCA1FqgieGFMVpaaTlgQQopVYCkpdYkNJGYjdH9sLd1zVcPvssPTe_qcDKnnDOusAhjjPBAGdd478DmrSsr7X5ygvOTxzx4zE8e87PHULkbKiUA_OEqEeEDwX4Bstltbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553590655</pqid></control><display><type>article</type><title>MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Yeong-Hyeon ; Shin, Ukcheol ; Park, Jinsun ; Kweon, In So</creator><creatorcontrib>Kim, Yeong-Hyeon ; Shin, Ukcheol ; Park, Jinsun ; Kweon, In So</creatorcontrib><description>In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segmentation knowledge from an RGB image segmentation network. We also enhance the generalization capability of our thermal segmentation network with pixel-level domain adaptation bridging day and night thermal image domains. With our framework, a thermal image segmentation network can achieve high performance without any ground-truth labels by exploiting successive multi-spectral knowledge transfers including RGB-to-RGB, RGB-to-Thermal, and Thermal-to-Thermal adaptations. Moreover, we provide a real-world RGB-Thermal semantic segmentation dataset with 950 manually annotated Cityscapes-style ground-truth labels in 19 classes. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed framework quantitatively and qualitatively.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3093652</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; autonomous driving ; Datasets ; Domains ; Image enhancement ; Image segmentation ; Knowledge engineering ; Knowledge management ; Labels ; Semantic segmentation ; Semantics ; Sensors ; Sonar ; Spectra ; Streaming media ; Task analysis ; thermal camera ; Thermal sensors ; Unsupervised domain adaptation</subject><ispartof>IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.6497-6504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-923a0db06805953874964bc5ee7ffe24c5dcca8f8f5e061d8893878f2fc424803</citedby><cites>FETCH-LOGICAL-c291t-923a0db06805953874964bc5ee7ffe24c5dcca8f8f5e061d8893878f2fc424803</cites><orcidid>0000-0001-8363-9886 ; 0000-0003-4304-0881 ; 0000-0002-2296-819X ; 0000-0001-9626-5983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9468936$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9468936$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Yeong-Hyeon</creatorcontrib><creatorcontrib>Shin, Ukcheol</creatorcontrib><creatorcontrib>Park, Jinsun</creatorcontrib><creatorcontrib>Kweon, In So</creatorcontrib><title>MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segmentation knowledge from an RGB image segmentation network. We also enhance the generalization capability of our thermal segmentation network with pixel-level domain adaptation bridging day and night thermal image domains. With our framework, a thermal image segmentation network can achieve high performance without any ground-truth labels by exploiting successive multi-spectral knowledge transfers including RGB-to-RGB, RGB-to-Thermal, and Thermal-to-Thermal adaptations. Moreover, we provide a real-world RGB-Thermal semantic segmentation dataset with 950 manually annotated Cityscapes-style ground-truth labels in 19 classes. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed framework quantitatively and qualitatively.</description><subject>Adaptation</subject><subject>autonomous driving</subject><subject>Datasets</subject><subject>Domains</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Knowledge engineering</subject><subject>Knowledge management</subject><subject>Labels</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Sonar</subject><subject>Spectra</subject><subject>Streaming media</subject><subject>Task analysis</subject><subject>thermal camera</subject><subject>Thermal sensors</subject><subject>Unsupervised domain adaptation</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AURgdRsNTuBTcB16nzyExm3IXWR6FFsO1SwnRyp6Y0D2cSwX_vlBRxdb_F-e69HIRuCZ4SgtXD8j2bUkzJlGHFBKcXaERZmsYsFeLyX75GE-8PGGPCacoUH6GP1TrezrPHaNUfuzJet2A6p4_RtvZ9C-679FBE86bSZR1lhW473ZVNHdnGRZtPcFVAF5XeQ7SGStddaULYV1AP3A26svroYXKeY7R9ftrMXuPl28tili1jQxXpYkWZxsUOC4m54kymiRLJznCA1FqgieGFMVpaaTlgQQopVYCkpdYkNJGYjdH9sLd1zVcPvssPTe_qcDKnnDOusAhjjPBAGdd478DmrSsr7X5ygvOTxzx4zE8e87PHULkbKiUA_OEqEeEDwX4Bstltbg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kim, Yeong-Hyeon</creator><creator>Shin, Ukcheol</creator><creator>Park, Jinsun</creator><creator>Kweon, In So</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8363-9886</orcidid><orcidid>https://orcid.org/0000-0003-4304-0881</orcidid><orcidid>https://orcid.org/0000-0002-2296-819X</orcidid><orcidid>https://orcid.org/0000-0001-9626-5983</orcidid></search><sort><creationdate>20211001</creationdate><title>MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation</title><author>Kim, Yeong-Hyeon ; Shin, Ukcheol ; Park, Jinsun ; Kweon, In So</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-923a0db06805953874964bc5ee7ffe24c5dcca8f8f5e061d8893878f2fc424803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>autonomous driving</topic><topic>Datasets</topic><topic>Domains</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Knowledge engineering</topic><topic>Knowledge management</topic><topic>Labels</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Sonar</topic><topic>Spectra</topic><topic>Streaming media</topic><topic>Task analysis</topic><topic>thermal camera</topic><topic>Thermal sensors</topic><topic>Unsupervised domain adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yeong-Hyeon</creatorcontrib><creatorcontrib>Shin, Ukcheol</creatorcontrib><creatorcontrib>Park, Jinsun</creatorcontrib><creatorcontrib>Kweon, In So</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Yeong-Hyeon</au><au>Shin, Ukcheol</au><au>Park, Jinsun</au><au>Kweon, In So</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>6497</spage><epage>6504</epage><pages>6497-6504</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segmentation knowledge from an RGB image segmentation network. We also enhance the generalization capability of our thermal segmentation network with pixel-level domain adaptation bridging day and night thermal image domains. With our framework, a thermal image segmentation network can achieve high performance without any ground-truth labels by exploiting successive multi-spectral knowledge transfers including RGB-to-RGB, RGB-to-Thermal, and Thermal-to-Thermal adaptations. Moreover, we provide a real-world RGB-Thermal semantic segmentation dataset with 950 manually annotated Cityscapes-style ground-truth labels in 19 classes. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed framework quantitatively and qualitatively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3093652</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8363-9886</orcidid><orcidid>https://orcid.org/0000-0003-4304-0881</orcidid><orcidid>https://orcid.org/0000-0002-2296-819X</orcidid><orcidid>https://orcid.org/0000-0001-9626-5983</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.6497-6504
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2553590655
source IEEE Electronic Library (IEL)
subjects Adaptation
autonomous driving
Datasets
Domains
Image enhancement
Image segmentation
Knowledge engineering
Knowledge management
Labels
Semantic segmentation
Semantics
Sensors
Sonar
Spectra
Streaming media
Task analysis
thermal camera
Thermal sensors
Unsupervised domain adaptation
title MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MS-UDA:%20Multi-Spectral%20Unsupervised%20Domain%20Adaptation%20for%20Thermal%20Image%20Semantic%20Segmentation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Kim,%20Yeong-Hyeon&rft.date=2021-10-01&rft.volume=6&rft.issue=4&rft.spage=6497&rft.epage=6504&rft.pages=6497-6504&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3093652&rft_dat=%3Cproquest_RIE%3E2553590655%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553590655&rft_id=info:pmid/&rft_ieee_id=9468936&rfr_iscdi=true