MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation
In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segment...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-10, Vol.6 (4), p.6497-6504 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6504 |
---|---|
container_issue | 4 |
container_start_page | 6497 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Kim, Yeong-Hyeon Shin, Ukcheol Park, Jinsun Kweon, In So |
description | In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segmentation knowledge from an RGB image segmentation network. We also enhance the generalization capability of our thermal segmentation network with pixel-level domain adaptation bridging day and night thermal image domains. With our framework, a thermal image segmentation network can achieve high performance without any ground-truth labels by exploiting successive multi-spectral knowledge transfers including RGB-to-RGB, RGB-to-Thermal, and Thermal-to-Thermal adaptations. Moreover, we provide a real-world RGB-Thermal semantic segmentation dataset with 950 manually annotated Cityscapes-style ground-truth labels in 19 classes. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed framework quantitatively and qualitatively. |
doi_str_mv | 10.1109/LRA.2021.3093652 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2553590655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9468936</ieee_id><sourcerecordid>2553590655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-923a0db06805953874964bc5ee7ffe24c5dcca8f8f5e061d8893878f2fc424803</originalsourceid><addsrcrecordid>eNpNkEtLw0AURgdRsNTuBTcB16nzyExm3IXWR6FFsO1SwnRyp6Y0D2cSwX_vlBRxdb_F-e69HIRuCZ4SgtXD8j2bUkzJlGHFBKcXaERZmsYsFeLyX75GE-8PGGPCacoUH6GP1TrezrPHaNUfuzJet2A6p4_RtvZ9C-679FBE86bSZR1lhW473ZVNHdnGRZtPcFVAF5XeQ7SGStddaULYV1AP3A26svroYXKeY7R9ftrMXuPl28tili1jQxXpYkWZxsUOC4m54kymiRLJznCA1FqgieGFMVpaaTlgQQopVYCkpdYkNJGYjdH9sLd1zVcPvssPTe_qcDKnnDOusAhjjPBAGdd478DmrSsr7X5ygvOTxzx4zE8e87PHULkbKiUA_OEqEeEDwX4Bstltbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553590655</pqid></control><display><type>article</type><title>MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Yeong-Hyeon ; Shin, Ukcheol ; Park, Jinsun ; Kweon, In So</creator><creatorcontrib>Kim, Yeong-Hyeon ; Shin, Ukcheol ; Park, Jinsun ; Kweon, In So</creatorcontrib><description>In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segmentation knowledge from an RGB image segmentation network. We also enhance the generalization capability of our thermal segmentation network with pixel-level domain adaptation bridging day and night thermal image domains. With our framework, a thermal image segmentation network can achieve high performance without any ground-truth labels by exploiting successive multi-spectral knowledge transfers including RGB-to-RGB, RGB-to-Thermal, and Thermal-to-Thermal adaptations. Moreover, we provide a real-world RGB-Thermal semantic segmentation dataset with 950 manually annotated Cityscapes-style ground-truth labels in 19 classes. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed framework quantitatively and qualitatively.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3093652</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; autonomous driving ; Datasets ; Domains ; Image enhancement ; Image segmentation ; Knowledge engineering ; Knowledge management ; Labels ; Semantic segmentation ; Semantics ; Sensors ; Sonar ; Spectra ; Streaming media ; Task analysis ; thermal camera ; Thermal sensors ; Unsupervised domain adaptation</subject><ispartof>IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.6497-6504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-923a0db06805953874964bc5ee7ffe24c5dcca8f8f5e061d8893878f2fc424803</citedby><cites>FETCH-LOGICAL-c291t-923a0db06805953874964bc5ee7ffe24c5dcca8f8f5e061d8893878f2fc424803</cites><orcidid>0000-0001-8363-9886 ; 0000-0003-4304-0881 ; 0000-0002-2296-819X ; 0000-0001-9626-5983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9468936$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9468936$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Yeong-Hyeon</creatorcontrib><creatorcontrib>Shin, Ukcheol</creatorcontrib><creatorcontrib>Park, Jinsun</creatorcontrib><creatorcontrib>Kweon, In So</creatorcontrib><title>MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segmentation knowledge from an RGB image segmentation network. We also enhance the generalization capability of our thermal segmentation network with pixel-level domain adaptation bridging day and night thermal image domains. With our framework, a thermal image segmentation network can achieve high performance without any ground-truth labels by exploiting successive multi-spectral knowledge transfers including RGB-to-RGB, RGB-to-Thermal, and Thermal-to-Thermal adaptations. Moreover, we provide a real-world RGB-Thermal semantic segmentation dataset with 950 manually annotated Cityscapes-style ground-truth labels in 19 classes. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed framework quantitatively and qualitatively.</description><subject>Adaptation</subject><subject>autonomous driving</subject><subject>Datasets</subject><subject>Domains</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Knowledge engineering</subject><subject>Knowledge management</subject><subject>Labels</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Sonar</subject><subject>Spectra</subject><subject>Streaming media</subject><subject>Task analysis</subject><subject>thermal camera</subject><subject>Thermal sensors</subject><subject>Unsupervised domain adaptation</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AURgdRsNTuBTcB16nzyExm3IXWR6FFsO1SwnRyp6Y0D2cSwX_vlBRxdb_F-e69HIRuCZ4SgtXD8j2bUkzJlGHFBKcXaERZmsYsFeLyX75GE-8PGGPCacoUH6GP1TrezrPHaNUfuzJet2A6p4_RtvZ9C-679FBE86bSZR1lhW473ZVNHdnGRZtPcFVAF5XeQ7SGStddaULYV1AP3A26svroYXKeY7R9ftrMXuPl28tili1jQxXpYkWZxsUOC4m54kymiRLJznCA1FqgieGFMVpaaTlgQQopVYCkpdYkNJGYjdH9sLd1zVcPvssPTe_qcDKnnDOusAhjjPBAGdd478DmrSsr7X5ygvOTxzx4zE8e87PHULkbKiUA_OEqEeEDwX4Bstltbg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kim, Yeong-Hyeon</creator><creator>Shin, Ukcheol</creator><creator>Park, Jinsun</creator><creator>Kweon, In So</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8363-9886</orcidid><orcidid>https://orcid.org/0000-0003-4304-0881</orcidid><orcidid>https://orcid.org/0000-0002-2296-819X</orcidid><orcidid>https://orcid.org/0000-0001-9626-5983</orcidid></search><sort><creationdate>20211001</creationdate><title>MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation</title><author>Kim, Yeong-Hyeon ; Shin, Ukcheol ; Park, Jinsun ; Kweon, In So</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-923a0db06805953874964bc5ee7ffe24c5dcca8f8f5e061d8893878f2fc424803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>autonomous driving</topic><topic>Datasets</topic><topic>Domains</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Knowledge engineering</topic><topic>Knowledge management</topic><topic>Labels</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Sonar</topic><topic>Spectra</topic><topic>Streaming media</topic><topic>Task analysis</topic><topic>thermal camera</topic><topic>Thermal sensors</topic><topic>Unsupervised domain adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yeong-Hyeon</creatorcontrib><creatorcontrib>Shin, Ukcheol</creatorcontrib><creatorcontrib>Park, Jinsun</creatorcontrib><creatorcontrib>Kweon, In So</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Yeong-Hyeon</au><au>Shin, Ukcheol</au><au>Park, Jinsun</au><au>Kweon, In So</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>6497</spage><epage>6504</epage><pages>6497-6504</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segmentation knowledge from an RGB image segmentation network. We also enhance the generalization capability of our thermal segmentation network with pixel-level domain adaptation bridging day and night thermal image domains. With our framework, a thermal image segmentation network can achieve high performance without any ground-truth labels by exploiting successive multi-spectral knowledge transfers including RGB-to-RGB, RGB-to-Thermal, and Thermal-to-Thermal adaptations. Moreover, we provide a real-world RGB-Thermal semantic segmentation dataset with 950 manually annotated Cityscapes-style ground-truth labels in 19 classes. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed framework quantitatively and qualitatively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3093652</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8363-9886</orcidid><orcidid>https://orcid.org/0000-0003-4304-0881</orcidid><orcidid>https://orcid.org/0000-0002-2296-819X</orcidid><orcidid>https://orcid.org/0000-0001-9626-5983</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-10, Vol.6 (4), p.6497-6504 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2553590655 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation autonomous driving Datasets Domains Image enhancement Image segmentation Knowledge engineering Knowledge management Labels Semantic segmentation Semantics Sensors Sonar Spectra Streaming media Task analysis thermal camera Thermal sensors Unsupervised domain adaptation |
title | MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MS-UDA:%20Multi-Spectral%20Unsupervised%20Domain%20Adaptation%20for%20Thermal%20Image%20Semantic%20Segmentation&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Kim,%20Yeong-Hyeon&rft.date=2021-10-01&rft.volume=6&rft.issue=4&rft.spage=6497&rft.epage=6504&rft.pages=6497-6504&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3093652&rft_dat=%3Cproquest_RIE%3E2553590655%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553590655&rft_id=info:pmid/&rft_ieee_id=9468936&rfr_iscdi=true |