Langlands duality and Poisson–Lie duality via cluster theory and tropicalization
Let G be a connected semisimple Lie group. There are two natural duality constructions that assign to G : its Langlands dual group G ∨ , and its Poisson–Lie dual group G ∗ , respectively. The main result of this paper is the following relation between these two objects: the integral cone defined by...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2021-09, Vol.27 (4), Article 69 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Selecta mathematica (Basel, Switzerland) |
container_volume | 27 |
creator | Alekseev, Anton Berenstein, Arkady Hoffman, Benjamin Li, Yanpeng |
description | Let
G
be a connected semisimple Lie group. There are two natural duality constructions that assign to
G
: its Langlands dual group
G
∨
, and its Poisson–Lie dual group
G
∗
, respectively. The main result of this paper is the following relation between these two objects: the integral cone defined by the cluster structure and the Berenstein–Kazhdan potential on the double Bruhat cell
G
∨
;
w
0
,
e
⊂
G
∨
is isomorphic to the integral Bohr–Sommerfeld cone defined by the Poisson structure on the partial tropicalization of
K
∗
⊂
G
∗
(the Poisson–Lie dual of the compact form
K
⊂
G
). By Berenstein and Kazhdan (in: Contemporary mathematics, vol. 433. American Mathematical Society, Providence, pp 13–88, 2007), the first cone parametrizes the canonical bases of irreducible
G
-modules. The corresponding points in the second cone belong to integral symplectic leaves of the partial tropicalization labeled by the highest weight of the representation. As a by-product of our construction, we show that symplectic volumes of generic symplectic leaves in the partial tropicalization of
K
∗
are equal to symplectic volumes of the corresponding coadjoint orbits in
Lie
(
K
)
∗
. To achieve these goals, we make use of (Langlands dual) double cluster varieties defined by Fock and Goncharov (Ann Sci Ec Norm Supér (4) 42(6):865–930, 2009). These are pairs of cluster varieties whose seed matrices are transpose to each other. There is a naturally defined isomorphism between their tropicalizations. The isomorphism between the cones described above is a particular instance of such an isomorphism associated to the double Bruhat cells
G
w
0
,
e
⊂
G
and
G
∨
;
w
0
,
e
⊂
G
∨
. |
doi_str_mv | 10.1007/s00029-021-00682-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2553536193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553536193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-97432790a6eac5b65d98e0daa38d0ebf74bac8c8e64f6ef8fd060c028d53587a3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeC5-gkadPkKIu6QkERPYdsmq5darMmqex68h18Q5_EaEVvnmaG-f4Z-BA6JnBKAMqzAABUYqAEA3BB8WYHTUhOAUugsJt6oBQTQfN9dBDCKuGcUpigu0r3y073dcjqQXdt3GZpyG5dG4LrP97eq9b-bl5anZluCNH6LD5a50c4erduTUJedWxdf4j2Gt0Fe_RTp-jh8uJ-NsfVzdX17LzChhEZsSxzRksJmlttigUvaiks1FozUYNdNGW-0EYYYXnecNuIpgYOBqioC1aIUrMpOhnvrr17HmyIauUG36eXihaJYZxIlig6Usa7ELxt1Nq3T9pvFQH15U6N7lRyp77dqU0KsTEUEtwvrf87_U_qE3csdGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553536193</pqid></control><display><type>article</type><title>Langlands duality and Poisson–Lie duality via cluster theory and tropicalization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alekseev, Anton ; Berenstein, Arkady ; Hoffman, Benjamin ; Li, Yanpeng</creator><creatorcontrib>Alekseev, Anton ; Berenstein, Arkady ; Hoffman, Benjamin ; Li, Yanpeng</creatorcontrib><description>Let
G
be a connected semisimple Lie group. There are two natural duality constructions that assign to
G
: its Langlands dual group
G
∨
, and its Poisson–Lie dual group
G
∗
, respectively. The main result of this paper is the following relation between these two objects: the integral cone defined by the cluster structure and the Berenstein–Kazhdan potential on the double Bruhat cell
G
∨
;
w
0
,
e
⊂
G
∨
is isomorphic to the integral Bohr–Sommerfeld cone defined by the Poisson structure on the partial tropicalization of
K
∗
⊂
G
∗
(the Poisson–Lie dual of the compact form
K
⊂
G
). By Berenstein and Kazhdan (in: Contemporary mathematics, vol. 433. American Mathematical Society, Providence, pp 13–88, 2007), the first cone parametrizes the canonical bases of irreducible
G
-modules. The corresponding points in the second cone belong to integral symplectic leaves of the partial tropicalization labeled by the highest weight of the representation. As a by-product of our construction, we show that symplectic volumes of generic symplectic leaves in the partial tropicalization of
K
∗
are equal to symplectic volumes of the corresponding coadjoint orbits in
Lie
(
K
)
∗
. To achieve these goals, we make use of (Langlands dual) double cluster varieties defined by Fock and Goncharov (Ann Sci Ec Norm Supér (4) 42(6):865–930, 2009). These are pairs of cluster varieties whose seed matrices are transpose to each other. There is a naturally defined isomorphism between their tropicalizations. The isomorphism between the cones described above is a particular instance of such an isomorphism associated to the double Bruhat cells
G
w
0
,
e
⊂
G
and
G
∨
;
w
0
,
e
⊂
G
∨
.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-021-00682-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Clusters ; Cones ; Integrals ; Isomorphism ; Lie groups ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2021-09, Vol.27 (4), Article 69</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-97432790a6eac5b65d98e0daa38d0ebf74bac8c8e64f6ef8fd060c028d53587a3</citedby><cites>FETCH-LOGICAL-c319t-97432790a6eac5b65d98e0daa38d0ebf74bac8c8e64f6ef8fd060c028d53587a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00029-021-00682-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00029-021-00682-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alekseev, Anton</creatorcontrib><creatorcontrib>Berenstein, Arkady</creatorcontrib><creatorcontrib>Hoffman, Benjamin</creatorcontrib><creatorcontrib>Li, Yanpeng</creatorcontrib><title>Langlands duality and Poisson–Lie duality via cluster theory and tropicalization</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>Let
G
be a connected semisimple Lie group. There are two natural duality constructions that assign to
G
: its Langlands dual group
G
∨
, and its Poisson–Lie dual group
G
∗
, respectively. The main result of this paper is the following relation between these two objects: the integral cone defined by the cluster structure and the Berenstein–Kazhdan potential on the double Bruhat cell
G
∨
;
w
0
,
e
⊂
G
∨
is isomorphic to the integral Bohr–Sommerfeld cone defined by the Poisson structure on the partial tropicalization of
K
∗
⊂
G
∗
(the Poisson–Lie dual of the compact form
K
⊂
G
). By Berenstein and Kazhdan (in: Contemporary mathematics, vol. 433. American Mathematical Society, Providence, pp 13–88, 2007), the first cone parametrizes the canonical bases of irreducible
G
-modules. The corresponding points in the second cone belong to integral symplectic leaves of the partial tropicalization labeled by the highest weight of the representation. As a by-product of our construction, we show that symplectic volumes of generic symplectic leaves in the partial tropicalization of
K
∗
are equal to symplectic volumes of the corresponding coadjoint orbits in
Lie
(
K
)
∗
. To achieve these goals, we make use of (Langlands dual) double cluster varieties defined by Fock and Goncharov (Ann Sci Ec Norm Supér (4) 42(6):865–930, 2009). These are pairs of cluster varieties whose seed matrices are transpose to each other. There is a naturally defined isomorphism between their tropicalizations. The isomorphism between the cones described above is a particular instance of such an isomorphism associated to the double Bruhat cells
G
w
0
,
e
⊂
G
and
G
∨
;
w
0
,
e
⊂
G
∨
.</description><subject>Clusters</subject><subject>Cones</subject><subject>Integrals</subject><subject>Isomorphism</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeC5-gkadPkKIu6QkERPYdsmq5darMmqex68h18Q5_EaEVvnmaG-f4Z-BA6JnBKAMqzAABUYqAEA3BB8WYHTUhOAUugsJt6oBQTQfN9dBDCKuGcUpigu0r3y073dcjqQXdt3GZpyG5dG4LrP97eq9b-bl5anZluCNH6LD5a50c4erduTUJedWxdf4j2Gt0Fe_RTp-jh8uJ-NsfVzdX17LzChhEZsSxzRksJmlttigUvaiks1FozUYNdNGW-0EYYYXnecNuIpgYOBqioC1aIUrMpOhnvrr17HmyIauUG36eXihaJYZxIlig6Usa7ELxt1Nq3T9pvFQH15U6N7lRyp77dqU0KsTEUEtwvrf87_U_qE3csdGE</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Alekseev, Anton</creator><creator>Berenstein, Arkady</creator><creator>Hoffman, Benjamin</creator><creator>Li, Yanpeng</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Langlands duality and Poisson–Lie duality via cluster theory and tropicalization</title><author>Alekseev, Anton ; Berenstein, Arkady ; Hoffman, Benjamin ; Li, Yanpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-97432790a6eac5b65d98e0daa38d0ebf74bac8c8e64f6ef8fd060c028d53587a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clusters</topic><topic>Cones</topic><topic>Integrals</topic><topic>Isomorphism</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alekseev, Anton</creatorcontrib><creatorcontrib>Berenstein, Arkady</creatorcontrib><creatorcontrib>Hoffman, Benjamin</creatorcontrib><creatorcontrib>Li, Yanpeng</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alekseev, Anton</au><au>Berenstein, Arkady</au><au>Hoffman, Benjamin</au><au>Li, Yanpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Langlands duality and Poisson–Lie duality via cluster theory and tropicalization</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><artnum>69</artnum><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>Let
G
be a connected semisimple Lie group. There are two natural duality constructions that assign to
G
: its Langlands dual group
G
∨
, and its Poisson–Lie dual group
G
∗
, respectively. The main result of this paper is the following relation between these two objects: the integral cone defined by the cluster structure and the Berenstein–Kazhdan potential on the double Bruhat cell
G
∨
;
w
0
,
e
⊂
G
∨
is isomorphic to the integral Bohr–Sommerfeld cone defined by the Poisson structure on the partial tropicalization of
K
∗
⊂
G
∗
(the Poisson–Lie dual of the compact form
K
⊂
G
). By Berenstein and Kazhdan (in: Contemporary mathematics, vol. 433. American Mathematical Society, Providence, pp 13–88, 2007), the first cone parametrizes the canonical bases of irreducible
G
-modules. The corresponding points in the second cone belong to integral symplectic leaves of the partial tropicalization labeled by the highest weight of the representation. As a by-product of our construction, we show that symplectic volumes of generic symplectic leaves in the partial tropicalization of
K
∗
are equal to symplectic volumes of the corresponding coadjoint orbits in
Lie
(
K
)
∗
. To achieve these goals, we make use of (Langlands dual) double cluster varieties defined by Fock and Goncharov (Ann Sci Ec Norm Supér (4) 42(6):865–930, 2009). These are pairs of cluster varieties whose seed matrices are transpose to each other. There is a naturally defined isomorphism between their tropicalizations. The isomorphism between the cones described above is a particular instance of such an isomorphism associated to the double Bruhat cells
G
w
0
,
e
⊂
G
and
G
∨
;
w
0
,
e
⊂
G
∨
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-021-00682-x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1824 |
ispartof | Selecta mathematica (Basel, Switzerland), 2021-09, Vol.27 (4), Article 69 |
issn | 1022-1824 1420-9020 |
language | eng |
recordid | cdi_proquest_journals_2553536193 |
source | SpringerLink Journals - AutoHoldings |
subjects | Clusters Cones Integrals Isomorphism Lie groups Mathematical analysis Mathematics Mathematics and Statistics |
title | Langlands duality and Poisson–Lie duality via cluster theory and tropicalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Langlands%20duality%20and%20Poisson%E2%80%93Lie%20duality%20via%20cluster%20theory%20and%20tropicalization&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Alekseev,%20Anton&rft.date=2021-09-01&rft.volume=27&rft.issue=4&rft.artnum=69&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-021-00682-x&rft_dat=%3Cproquest_cross%3E2553536193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553536193&rft_id=info:pmid/&rfr_iscdi=true |