Mn Ion Influence on the Structural and Magnetic Response of CaTi1−xMnxO3

This paper describes the CaTi 1− x Mn x O 3 ( x  = 0.0, 0.4, 0.6, 0.8 and 1.0) system synthesis using the solid-state reaction (SSR) method. The structural, morphological, and magnetic properties of Mn ion were evaluated in the CaTiO 3 system through X-ray diffraction patterns (XRD), scanning electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2021-08, Vol.204 (3-4), p.85-94
Hauptverfasser: Saavedra Gaona, I. M., Anzola, E. W. Caro, Moreno, M. A. Mendoza, Sáenz, C. L. Sánchez, Canaria, C., Turatti, A. M., Pimentel, J. L., Mesquita, F., Parra Vargas, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 3-4
container_start_page 85
container_title Journal of low temperature physics
container_volume 204
creator Saavedra Gaona, I. M.
Anzola, E. W. Caro
Moreno, M. A. Mendoza
Sáenz, C. L. Sánchez
Canaria, C.
Turatti, A. M.
Pimentel, J. L.
Mesquita, F.
Parra Vargas, C. A.
description This paper describes the CaTi 1− x Mn x O 3 ( x  = 0.0, 0.4, 0.6, 0.8 and 1.0) system synthesis using the solid-state reaction (SSR) method. The structural, morphological, and magnetic properties of Mn ion were evaluated in the CaTiO 3 system through X-ray diffraction patterns (XRD), scanning electron microscopy + electron-dispersive spectroscopy (SEM + EDS), and vibrating sample magnetometry. Rietveld analysis of the XRDs at room temperature evidenced that the samples crystallized in the Pnma (62) space group. Likewise, the XRDs showed that lattice parameters decreased when increasing Mn content. The SEM + EDS results exhibited typical features of samples obtained by SSR at high temperatures. The zero-field cooling and field cooling curves of magnetization in temperatures ranging from 50 to 300 K showed paramagnetic behavior in the applied field for each Mn-doped sample with a possible weak ferromagnetic-like ordering. Conversely, the CaMnO 3 sample exhibited antiferromagnetic ordering with T N near 113.26 K.
doi_str_mv 10.1007/s10909-021-02600-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2553536027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553536027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-cfd7697959cd419db019b35b0981d9aa7a46d5764312fc53d1f55e1fc84d4c7a3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmmUyapRS1lZaC1nVI81NbaqYmM1D7BK59RJ_E6AjuXBwuF75z7uUgdE7gkgCIq0RAgiyAkqwKoNgfoB7hghWCcXGIegCUFpRKcoxOUloDgBxUrIfupwGP66zgN60LxuG8NM8OPzaxNU0b9QbrYPFUL4NrVgY_uLStQ8qcx0M9X5HP94_dNOxm7BQdeb1J7ux39tHT7c18OComs7vx8HpSGCpZUxhvRSWF5NLYkki7ACIXjC_yQ8RKrYUuK8tFVTJCveHMEs-5I94MSlsaoVkfXXS521i_ti41al23MeSTinLOOKuAikzRjjKxTik6r7Zx9aLjmyKgvjtTXWcqd6Z-OlP7bGKdKWU4LF38i_7H9QWyoW72</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553536027</pqid></control><display><type>article</type><title>Mn Ion Influence on the Structural and Magnetic Response of CaTi1−xMnxO3</title><source>SpringerNature Journals</source><creator>Saavedra Gaona, I. M. ; Anzola, E. W. Caro ; Moreno, M. A. Mendoza ; Sáenz, C. L. Sánchez ; Canaria, C. ; Turatti, A. M. ; Pimentel, J. L. ; Mesquita, F. ; Parra Vargas, C. A.</creator><creatorcontrib>Saavedra Gaona, I. M. ; Anzola, E. W. Caro ; Moreno, M. A. Mendoza ; Sáenz, C. L. Sánchez ; Canaria, C. ; Turatti, A. M. ; Pimentel, J. L. ; Mesquita, F. ; Parra Vargas, C. A.</creatorcontrib><description>This paper describes the CaTi 1− x Mn x O 3 ( x  = 0.0, 0.4, 0.6, 0.8 and 1.0) system synthesis using the solid-state reaction (SSR) method. The structural, morphological, and magnetic properties of Mn ion were evaluated in the CaTiO 3 system through X-ray diffraction patterns (XRD), scanning electron microscopy + electron-dispersive spectroscopy (SEM + EDS), and vibrating sample magnetometry. Rietveld analysis of the XRDs at room temperature evidenced that the samples crystallized in the Pnma (62) space group. Likewise, the XRDs showed that lattice parameters decreased when increasing Mn content. The SEM + EDS results exhibited typical features of samples obtained by SSR at high temperatures. The zero-field cooling and field cooling curves of magnetization in temperatures ranging from 50 to 300 K showed paramagnetic behavior in the applied field for each Mn-doped sample with a possible weak ferromagnetic-like ordering. Conversely, the CaMnO 3 sample exhibited antiferromagnetic ordering with T N near 113.26 K.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-021-02600-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antiferromagnetism ; Characterization and Evaluation of Materials ; Chemical synthesis ; Condensed Matter Physics ; Cooling curves ; Crystallization ; Diffraction patterns ; Ferromagnetism ; High temperature ; Lattice parameters ; Low temperature physics ; Magnetic Materials ; Magnetic measurement ; Magnetic properties ; Magnetism ; Manganese ; Physics ; Physics and Astronomy ; Room temperature ; Scanning electron microscopy</subject><ispartof>Journal of low temperature physics, 2021-08, Vol.204 (3-4), p.85-94</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-cfd7697959cd419db019b35b0981d9aa7a46d5764312fc53d1f55e1fc84d4c7a3</citedby><cites>FETCH-LOGICAL-c293t-cfd7697959cd419db019b35b0981d9aa7a46d5764312fc53d1f55e1fc84d4c7a3</cites><orcidid>0000-0002-8354-1886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-021-02600-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-021-02600-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saavedra Gaona, I. M.</creatorcontrib><creatorcontrib>Anzola, E. W. Caro</creatorcontrib><creatorcontrib>Moreno, M. A. Mendoza</creatorcontrib><creatorcontrib>Sáenz, C. L. Sánchez</creatorcontrib><creatorcontrib>Canaria, C.</creatorcontrib><creatorcontrib>Turatti, A. M.</creatorcontrib><creatorcontrib>Pimentel, J. L.</creatorcontrib><creatorcontrib>Mesquita, F.</creatorcontrib><creatorcontrib>Parra Vargas, C. A.</creatorcontrib><title>Mn Ion Influence on the Structural and Magnetic Response of CaTi1−xMnxO3</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>This paper describes the CaTi 1− x Mn x O 3 ( x  = 0.0, 0.4, 0.6, 0.8 and 1.0) system synthesis using the solid-state reaction (SSR) method. The structural, morphological, and magnetic properties of Mn ion were evaluated in the CaTiO 3 system through X-ray diffraction patterns (XRD), scanning electron microscopy + electron-dispersive spectroscopy (SEM + EDS), and vibrating sample magnetometry. Rietveld analysis of the XRDs at room temperature evidenced that the samples crystallized in the Pnma (62) space group. Likewise, the XRDs showed that lattice parameters decreased when increasing Mn content. The SEM + EDS results exhibited typical features of samples obtained by SSR at high temperatures. The zero-field cooling and field cooling curves of magnetization in temperatures ranging from 50 to 300 K showed paramagnetic behavior in the applied field for each Mn-doped sample with a possible weak ferromagnetic-like ordering. Conversely, the CaMnO 3 sample exhibited antiferromagnetic ordering with T N near 113.26 K.</description><subject>Antiferromagnetism</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Condensed Matter Physics</subject><subject>Cooling curves</subject><subject>Crystallization</subject><subject>Diffraction patterns</subject><subject>Ferromagnetism</subject><subject>High temperature</subject><subject>Lattice parameters</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetic measurement</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Manganese</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmmUyapRS1lZaC1nVI81NbaqYmM1D7BK59RJ_E6AjuXBwuF75z7uUgdE7gkgCIq0RAgiyAkqwKoNgfoB7hghWCcXGIegCUFpRKcoxOUloDgBxUrIfupwGP66zgN60LxuG8NM8OPzaxNU0b9QbrYPFUL4NrVgY_uLStQ8qcx0M9X5HP94_dNOxm7BQdeb1J7ux39tHT7c18OComs7vx8HpSGCpZUxhvRSWF5NLYkki7ACIXjC_yQ8RKrYUuK8tFVTJCveHMEs-5I94MSlsaoVkfXXS521i_ti41al23MeSTinLOOKuAikzRjjKxTik6r7Zx9aLjmyKgvjtTXWcqd6Z-OlP7bGKdKWU4LF38i_7H9QWyoW72</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Saavedra Gaona, I. M.</creator><creator>Anzola, E. W. Caro</creator><creator>Moreno, M. A. Mendoza</creator><creator>Sáenz, C. L. Sánchez</creator><creator>Canaria, C.</creator><creator>Turatti, A. M.</creator><creator>Pimentel, J. L.</creator><creator>Mesquita, F.</creator><creator>Parra Vargas, C. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8354-1886</orcidid></search><sort><creationdate>20210801</creationdate><title>Mn Ion Influence on the Structural and Magnetic Response of CaTi1−xMnxO3</title><author>Saavedra Gaona, I. M. ; Anzola, E. W. Caro ; Moreno, M. A. Mendoza ; Sáenz, C. L. Sánchez ; Canaria, C. ; Turatti, A. M. ; Pimentel, J. L. ; Mesquita, F. ; Parra Vargas, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-cfd7697959cd419db019b35b0981d9aa7a46d5764312fc53d1f55e1fc84d4c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiferromagnetism</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Condensed Matter Physics</topic><topic>Cooling curves</topic><topic>Crystallization</topic><topic>Diffraction patterns</topic><topic>Ferromagnetism</topic><topic>High temperature</topic><topic>Lattice parameters</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetic measurement</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Manganese</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saavedra Gaona, I. M.</creatorcontrib><creatorcontrib>Anzola, E. W. Caro</creatorcontrib><creatorcontrib>Moreno, M. A. Mendoza</creatorcontrib><creatorcontrib>Sáenz, C. L. Sánchez</creatorcontrib><creatorcontrib>Canaria, C.</creatorcontrib><creatorcontrib>Turatti, A. M.</creatorcontrib><creatorcontrib>Pimentel, J. L.</creatorcontrib><creatorcontrib>Mesquita, F.</creatorcontrib><creatorcontrib>Parra Vargas, C. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saavedra Gaona, I. M.</au><au>Anzola, E. W. Caro</au><au>Moreno, M. A. Mendoza</au><au>Sáenz, C. L. Sánchez</au><au>Canaria, C.</au><au>Turatti, A. M.</au><au>Pimentel, J. L.</au><au>Mesquita, F.</au><au>Parra Vargas, C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn Ion Influence on the Structural and Magnetic Response of CaTi1−xMnxO3</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>204</volume><issue>3-4</issue><spage>85</spage><epage>94</epage><pages>85-94</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>This paper describes the CaTi 1− x Mn x O 3 ( x  = 0.0, 0.4, 0.6, 0.8 and 1.0) system synthesis using the solid-state reaction (SSR) method. The structural, morphological, and magnetic properties of Mn ion were evaluated in the CaTiO 3 system through X-ray diffraction patterns (XRD), scanning electron microscopy + electron-dispersive spectroscopy (SEM + EDS), and vibrating sample magnetometry. Rietveld analysis of the XRDs at room temperature evidenced that the samples crystallized in the Pnma (62) space group. Likewise, the XRDs showed that lattice parameters decreased when increasing Mn content. The SEM + EDS results exhibited typical features of samples obtained by SSR at high temperatures. The zero-field cooling and field cooling curves of magnetization in temperatures ranging from 50 to 300 K showed paramagnetic behavior in the applied field for each Mn-doped sample with a possible weak ferromagnetic-like ordering. Conversely, the CaMnO 3 sample exhibited antiferromagnetic ordering with T N near 113.26 K.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-021-02600-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8354-1886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2021-08, Vol.204 (3-4), p.85-94
issn 0022-2291
1573-7357
language eng
recordid cdi_proquest_journals_2553536027
source SpringerNature Journals
subjects Antiferromagnetism
Characterization and Evaluation of Materials
Chemical synthesis
Condensed Matter Physics
Cooling curves
Crystallization
Diffraction patterns
Ferromagnetism
High temperature
Lattice parameters
Low temperature physics
Magnetic Materials
Magnetic measurement
Magnetic properties
Magnetism
Manganese
Physics
Physics and Astronomy
Room temperature
Scanning electron microscopy
title Mn Ion Influence on the Structural and Magnetic Response of CaTi1−xMnxO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn%20Ion%20Influence%20on%20the%20Structural%20and%20Magnetic%20Response%20of%20CaTi1%E2%88%92xMnxO3&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Saavedra%20Gaona,%20I.%20M.&rft.date=2021-08-01&rft.volume=204&rft.issue=3-4&rft.spage=85&rft.epage=94&rft.pages=85-94&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-021-02600-z&rft_dat=%3Cproquest_cross%3E2553536027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553536027&rft_id=info:pmid/&rfr_iscdi=true