Thermoset resin curing simulation using quantum-chemical reaction path calculation and dissipative particle dynamics

Thermoset resin, which is commonly used as a matrix in carbon-fiber-reinforced plastic, requires curing procedures. We propose a curing simulation technique involving a dissipative particle dynamics (DPD) simulation, which can simulate a larger system and longer time period than those of conventiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-07, Vol.17 (28), p.677-6717
Hauptverfasser: Kawagoe, Yoshiaki, Kikugawa, Gota, Shirasu, Keiichi, Okabe, Tomonaga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermoset resin, which is commonly used as a matrix in carbon-fiber-reinforced plastic, requires curing procedures. We propose a curing simulation technique involving a dissipative particle dynamics (DPD) simulation, which can simulate a larger system and longer time period than those of conventional all-atom molecular dynamics (AA-MD) simulations. The proposed curing DPD simulation can represent the thermoset resin exothermic reaction process precisely by considering each reactivity according to the reaction types calculated via quantum-chemical reaction path calculations. The cure reaction process given by the curing DPD simulation agrees well with that given by a conventional curing AA-MD simulation, but with run-time and computational-resource reductions of 1/480 and 1/10 times, respectively. We also conduct reverse mapping, through which the AA-MD system can be reconstructed from the DPD system, to evaluate the structural and thermomechanical properties. The X-ray diffraction pattern and thermomechanical properties of the reconstructed system agree well with those of the systems derived from the curing AA-MD simulation and experimental setup. Therefore, a cured-resin AA-MD system can be obtained from a curing DPD simulation at an extremely low computational cost, and the thermomechanical properties can be evaluated precisely using this system. The proposed curing simulation technique can be applied in high-throughput screening for better materials properties and in large system calculations. We proposed a coarse-grained curing simulation technique for thermoset resin that combines DPD with an ab initio quantum calculation. An all-atom MD system was reconstructed from the DPD system using reverse mapping to evaluate several properties.
ISSN:1744-683X
1744-6848
DOI:10.1039/d1sm00600b