New multivariate kernel density estimator for uncertain data classification

Uncertainty in data occurs in diverse applications due to measurement errors, data incompleteness, and multiple repeated measurements. Several classifiers for uncertain data have been developed to tackle this uncertainty. However, the existing classifiers do not consider the dependencies among uncer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2021-08, Vol.303 (1-2), p.413-431
Hauptverfasser: Kim, Byunghoon, Jeong, Young-Seon, Jeong, Myong K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 1-2
container_start_page 413
container_title Annals of operations research
container_volume 303
creator Kim, Byunghoon
Jeong, Young-Seon
Jeong, Myong K.
description Uncertainty in data occurs in diverse applications due to measurement errors, data incompleteness, and multiple repeated measurements. Several classifiers for uncertain data have been developed to tackle this uncertainty. However, the existing classifiers do not consider the dependencies among uncertain features, even though this dependency has a critical effect on classification accuracy. Therefore, we propose a new Bayesian classification model that considers the correlation among uncertain features. To handle the uncertainty of data, new multivariate kernel density estimators are developed to estimate the class conditional probability density function of categorical, continuous, and mixed uncertain data. Experimental results with simulated data and real-life data sets show that the proposed approach is better than the existing approaches for classification of uncertain data in terms of classification accuracy.
doi_str_mv 10.1007/s10479-020-03715-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2553399323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A669209648</galeid><sourcerecordid>A669209648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-983544e00a1124e8f0edd123d5211393d676b762006baff90c538d6423a9179e3</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVIoa6bP9DTQq5ZZ_S1uzqG0KYlprkkZyFrR46ctdaRtC3-91XighsoQQiBeB6NZl5CvlBYUID2MlEQraqBQQ28pbIWJ2RGZctqxXl3SmbApKgl5_CRfEppAwCUdnJGbn_i72o7Ddn_MtGbjNUTxoBD1WNIPu8rTNlvTR5j5cqegsWYjQ9Vb7Kp7GBS8s5bk_0YPpMPzgwJz_6ec_Lw7ev99fd6eXfz4_pqWVvBeK5Vx6UQCGAoZQI7B9j3lPFeMkq54n3TNqu2YQDNyjinwEre9U1xjaKtQj4n54d3d3F8nsoH9WacYiglNZOlR6U440dqbQbUPrgxR2O3Pll91TSKgWpEV6jFf6iyetx6OwZ0vty_ES7-EVZT8gHLDMqw1o85rc2U0lucHXAbx5QiOr2LZZ5xrynol-j0ITpdotOv0WlRJH6QUoHDGuOxwXesPyCmmYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553399323</pqid></control><display><type>article</type><title>New multivariate kernel density estimator for uncertain data classification</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Kim, Byunghoon ; Jeong, Young-Seon ; Jeong, Myong K.</creator><creatorcontrib>Kim, Byunghoon ; Jeong, Young-Seon ; Jeong, Myong K.</creatorcontrib><description>Uncertainty in data occurs in diverse applications due to measurement errors, data incompleteness, and multiple repeated measurements. Several classifiers for uncertain data have been developed to tackle this uncertainty. However, the existing classifiers do not consider the dependencies among uncertain features, even though this dependency has a critical effect on classification accuracy. Therefore, we propose a new Bayesian classification model that considers the correlation among uncertain features. To handle the uncertainty of data, new multivariate kernel density estimators are developed to estimate the class conditional probability density function of categorical, continuous, and mixed uncertain data. Experimental results with simulated data and real-life data sets show that the proposed approach is better than the existing approaches for classification of uncertain data in terms of classification accuracy.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-020-03715-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Classification ; Classifiers ; Combinatorics ; Conditional probability ; Continuity (mathematics) ; Information management ; Kernels ; Machine learning ; Methods ; Multivariate analysis ; Operations research ; Operations Research/Decision Theory ; Probability density functions ; S.I.: Data Mining and Decision Analytics ; Theory of Computation ; Uncertainty</subject><ispartof>Annals of operations research, 2021-08, Vol.303 (1-2), p.413-431</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-983544e00a1124e8f0edd123d5211393d676b762006baff90c538d6423a9179e3</citedby><cites>FETCH-LOGICAL-c423t-983544e00a1124e8f0edd123d5211393d676b762006baff90c538d6423a9179e3</cites><orcidid>0000-0002-4124-5253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-020-03715-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-020-03715-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, Byunghoon</creatorcontrib><creatorcontrib>Jeong, Young-Seon</creatorcontrib><creatorcontrib>Jeong, Myong K.</creatorcontrib><title>New multivariate kernel density estimator for uncertain data classification</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>Uncertainty in data occurs in diverse applications due to measurement errors, data incompleteness, and multiple repeated measurements. Several classifiers for uncertain data have been developed to tackle this uncertainty. However, the existing classifiers do not consider the dependencies among uncertain features, even though this dependency has a critical effect on classification accuracy. Therefore, we propose a new Bayesian classification model that considers the correlation among uncertain features. To handle the uncertainty of data, new multivariate kernel density estimators are developed to estimate the class conditional probability density function of categorical, continuous, and mixed uncertain data. Experimental results with simulated data and real-life data sets show that the proposed approach is better than the existing approaches for classification of uncertain data in terms of classification accuracy.</description><subject>Business and Management</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Combinatorics</subject><subject>Conditional probability</subject><subject>Continuity (mathematics)</subject><subject>Information management</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multivariate analysis</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Probability density functions</subject><subject>S.I.: Data Mining and Decision Analytics</subject><subject>Theory of Computation</subject><subject>Uncertainty</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rGzEQhkVIoa6bP9DTQq5ZZ_S1uzqG0KYlprkkZyFrR46ctdaRtC3-91XighsoQQiBeB6NZl5CvlBYUID2MlEQraqBQQ28pbIWJ2RGZctqxXl3SmbApKgl5_CRfEppAwCUdnJGbn_i72o7Ddn_MtGbjNUTxoBD1WNIPu8rTNlvTR5j5cqegsWYjQ9Vb7Kp7GBS8s5bk_0YPpMPzgwJz_6ec_Lw7ev99fd6eXfz4_pqWVvBeK5Vx6UQCGAoZQI7B9j3lPFeMkq54n3TNqu2YQDNyjinwEre9U1xjaKtQj4n54d3d3F8nsoH9WacYiglNZOlR6U440dqbQbUPrgxR2O3Pll91TSKgWpEV6jFf6iyetx6OwZ0vty_ES7-EVZT8gHLDMqw1o85rc2U0lucHXAbx5QiOr2LZZ5xrynol-j0ITpdotOv0WlRJH6QUoHDGuOxwXesPyCmmYY</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Kim, Byunghoon</creator><creator>Jeong, Young-Seon</creator><creator>Jeong, Myong K.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4124-5253</orcidid></search><sort><creationdate>20210801</creationdate><title>New multivariate kernel density estimator for uncertain data classification</title><author>Kim, Byunghoon ; Jeong, Young-Seon ; Jeong, Myong K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-983544e00a1124e8f0edd123d5211393d676b762006baff90c538d6423a9179e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Business and Management</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Combinatorics</topic><topic>Conditional probability</topic><topic>Continuity (mathematics)</topic><topic>Information management</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multivariate analysis</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Probability density functions</topic><topic>S.I.: Data Mining and Decision Analytics</topic><topic>Theory of Computation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Byunghoon</creatorcontrib><creatorcontrib>Jeong, Young-Seon</creatorcontrib><creatorcontrib>Jeong, Myong K.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Byunghoon</au><au>Jeong, Young-Seon</au><au>Jeong, Myong K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New multivariate kernel density estimator for uncertain data classification</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>303</volume><issue>1-2</issue><spage>413</spage><epage>431</epage><pages>413-431</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>Uncertainty in data occurs in diverse applications due to measurement errors, data incompleteness, and multiple repeated measurements. Several classifiers for uncertain data have been developed to tackle this uncertainty. However, the existing classifiers do not consider the dependencies among uncertain features, even though this dependency has a critical effect on classification accuracy. Therefore, we propose a new Bayesian classification model that considers the correlation among uncertain features. To handle the uncertainty of data, new multivariate kernel density estimators are developed to estimate the class conditional probability density function of categorical, continuous, and mixed uncertain data. Experimental results with simulated data and real-life data sets show that the proposed approach is better than the existing approaches for classification of uncertain data in terms of classification accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-020-03715-4</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4124-5253</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2021-08, Vol.303 (1-2), p.413-431
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_2553399323
source SpringerLink Journals; Business Source Complete
subjects Business and Management
Classification
Classifiers
Combinatorics
Conditional probability
Continuity (mathematics)
Information management
Kernels
Machine learning
Methods
Multivariate analysis
Operations research
Operations Research/Decision Theory
Probability density functions
S.I.: Data Mining and Decision Analytics
Theory of Computation
Uncertainty
title New multivariate kernel density estimator for uncertain data classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20multivariate%20kernel%20density%20estimator%20for%20uncertain%20data%20classification&rft.jtitle=Annals%20of%20operations%20research&rft.au=Kim,%20Byunghoon&rft.date=2021-08-01&rft.volume=303&rft.issue=1-2&rft.spage=413&rft.epage=431&rft.pages=413-431&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-020-03715-4&rft_dat=%3Cgale_proqu%3EA669209648%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553399323&rft_id=info:pmid/&rft_galeid=A669209648&rfr_iscdi=true