Optimality Conditions for Bilevel Imaging Learning Problems with Total Variation Regularization
We address the problem of optimal scale-dependent parameter learning in total variation image denoising. Such problems are formulated as bilevel optimization instances with total variation denoising problems as lower-level constraints. For the bilevel problem, we are able to derive M-stationarity co...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Juan Carlos De los Reyes Villacís, David |
description | We address the problem of optimal scale-dependent parameter learning in total variation image denoising. Such problems are formulated as bilevel optimization instances with total variation denoising problems as lower-level constraints. For the bilevel problem, we are able to derive M-stationarity conditions, after characterizing the corresponding Mordukhovich generalized normal cone and verifying suitable constraint qualification conditions. We also derive B-stationarity conditions, after investigating the Lipschitz continuity and directional differentiability of the lower-level solution operator. A characterization of the Bouligand subdifferential of the solution mapping, by means of a properly defined linear system, is provided as well. Based on this characterization, we propose a two-phase non-smooth trust-region algorithm for the numerical solution of the bilevel problem and test it computationally for two particular experimental settings. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2553398979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553398979</sourcerecordid><originalsourceid>FETCH-proquest_journals_25533989793</originalsourceid><addsrcrecordid>eNqNjtEKgjAYhUcQJOU7_NC1YFum3iZFQVCEdCuLpv0yN9tmUU9fRg_Q1Tkf5xw4A-JRxmZBMqd0RHxr6zAM6SKmUcQ8Uuxbhw2X6J6QaXVBh1pZKLWBJUpxFxK2Da9QVbAT3KjeHIw-S9FYeKC7Qq4dl3DiBnm_haOoOvmh1xcnZFhyaYX_0zGZrld5tglao2-dsK6odWfUJyr6QyxN0jhl_7Xe-vJFWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553398979</pqid></control><display><type>article</type><title>Optimality Conditions for Bilevel Imaging Learning Problems with Total Variation Regularization</title><source>Free E- Journals</source><creator>Juan Carlos De los Reyes ; Villacís, David</creator><creatorcontrib>Juan Carlos De los Reyes ; Villacís, David</creatorcontrib><description>We address the problem of optimal scale-dependent parameter learning in total variation image denoising. Such problems are formulated as bilevel optimization instances with total variation denoising problems as lower-level constraints. For the bilevel problem, we are able to derive M-stationarity conditions, after characterizing the corresponding Mordukhovich generalized normal cone and verifying suitable constraint qualification conditions. We also derive B-stationarity conditions, after investigating the Lipschitz continuity and directional differentiability of the lower-level solution operator. A characterization of the Bouligand subdifferential of the solution mapping, by means of a properly defined linear system, is provided as well. Based on this characterization, we propose a two-phase non-smooth trust-region algorithm for the numerical solution of the bilevel problem and test it computationally for two particular experimental settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Learning ; Noise reduction ; Optimization ; Regularization</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Juan Carlos De los Reyes</creatorcontrib><creatorcontrib>Villacís, David</creatorcontrib><title>Optimality Conditions for Bilevel Imaging Learning Problems with Total Variation Regularization</title><title>arXiv.org</title><description>We address the problem of optimal scale-dependent parameter learning in total variation image denoising. Such problems are formulated as bilevel optimization instances with total variation denoising problems as lower-level constraints. For the bilevel problem, we are able to derive M-stationarity conditions, after characterizing the corresponding Mordukhovich generalized normal cone and verifying suitable constraint qualification conditions. We also derive B-stationarity conditions, after investigating the Lipschitz continuity and directional differentiability of the lower-level solution operator. A characterization of the Bouligand subdifferential of the solution mapping, by means of a properly defined linear system, is provided as well. Based on this characterization, we propose a two-phase non-smooth trust-region algorithm for the numerical solution of the bilevel problem and test it computationally for two particular experimental settings.</description><subject>Algorithms</subject><subject>Learning</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjtEKgjAYhUcQJOU7_NC1YFum3iZFQVCEdCuLpv0yN9tmUU9fRg_Q1Tkf5xw4A-JRxmZBMqd0RHxr6zAM6SKmUcQ8Uuxbhw2X6J6QaXVBh1pZKLWBJUpxFxK2Da9QVbAT3KjeHIw-S9FYeKC7Qq4dl3DiBnm_haOoOvmh1xcnZFhyaYX_0zGZrld5tglao2-dsK6odWfUJyr6QyxN0jhl_7Xe-vJFWQ</recordid><startdate>20210716</startdate><enddate>20210716</enddate><creator>Juan Carlos De los Reyes</creator><creator>Villacís, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210716</creationdate><title>Optimality Conditions for Bilevel Imaging Learning Problems with Total Variation Regularization</title><author>Juan Carlos De los Reyes ; Villacís, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25533989793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Learning</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Juan Carlos De los Reyes</creatorcontrib><creatorcontrib>Villacís, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juan Carlos De los Reyes</au><au>Villacís, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimality Conditions for Bilevel Imaging Learning Problems with Total Variation Regularization</atitle><jtitle>arXiv.org</jtitle><date>2021-07-16</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We address the problem of optimal scale-dependent parameter learning in total variation image denoising. Such problems are formulated as bilevel optimization instances with total variation denoising problems as lower-level constraints. For the bilevel problem, we are able to derive M-stationarity conditions, after characterizing the corresponding Mordukhovich generalized normal cone and verifying suitable constraint qualification conditions. We also derive B-stationarity conditions, after investigating the Lipschitz continuity and directional differentiability of the lower-level solution operator. A characterization of the Bouligand subdifferential of the solution mapping, by means of a properly defined linear system, is provided as well. Based on this characterization, we propose a two-phase non-smooth trust-region algorithm for the numerical solution of the bilevel problem and test it computationally for two particular experimental settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2553398979 |
source | Free E- Journals |
subjects | Algorithms Learning Noise reduction Optimization Regularization |
title | Optimality Conditions for Bilevel Imaging Learning Problems with Total Variation Regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimality%20Conditions%20for%20Bilevel%20Imaging%20Learning%20Problems%20with%20Total%20Variation%20Regularization&rft.jtitle=arXiv.org&rft.au=Juan%20Carlos%20De%20los%20Reyes&rft.date=2021-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2553398979%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553398979&rft_id=info:pmid/&rfr_iscdi=true |