Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer

We study the question of periodic homogenization of a variably scaled reaction-diffusion problem with non-linear drift posed for a domain crossed by a flat composite thin layer. The structure of the non-linearity in the drift was obtained in earlier works as hydrodynamic limit of a totally asymmetri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
Hauptverfasser: Raveendran, Vishnu, Cirillo, Emilio N M, de Bonis, Ida, Muntean, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Raveendran, Vishnu
Cirillo, Emilio N M
de Bonis, Ida
Muntean, Adrian
description We study the question of periodic homogenization of a variably scaled reaction-diffusion problem with non-linear drift posed for a domain crossed by a flat composite thin layer. The structure of the non-linearity in the drift was obtained in earlier works as hydrodynamic limit of a totally asymmetric simple exclusion process (TASEP) process for a population of interacting particles crossing a domain with obstacle. Using energy-type estimates as well as concepts like thin-layer convergence and two-scale convergence, we derive the homogenized evolution equation and the corresponding effective model parameters for a regularized problem. Special attention is paid to the derivation of the effective transmission conditions across the separating limit interface in essentially two different situations: (i) finitely thin layer and (ii) infinitely thin layer. This study should be seen as a preliminary step needed for the investigation of averaging fast non-linear drifts across material interfaces -- a topic with direct applications in the design of thin composite materials meant to be impenetrable to high-velocity impacts.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2553398765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553398765</sourcerecordid><originalsourceid>FETCH-proquest_journals_25533987653</originalsourceid><addsrcrecordid>eNqNj8FOwzAMhiMkJCbYO1jiXKkkdBvniYk73KcsdVZPbdzF6aTxKDwtLoI7J9v___m3fGMW1rmnavNs7Z1ZipzqurartW0atzBf78H3lI6AMWIoApygdAgjZuKWAnQ88BETffpC6nEEDxl9mKeqpRgnmbvA6YI_IoyZDz0OMLJgC5T-IpAngZYHT0lA-aS8AoerJpZOucCD7lBB6P0V84O5jb4XXP7We_O4e_3YvlV64DyhlP2Jp5zU2s-_uJfNetW4_1HfZzVbzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553398765</pqid></control><display><type>article</type><title>Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer</title><source>Freely Accessible Journals</source><creator>Raveendran, Vishnu ; Cirillo, Emilio N M ; de Bonis, Ida ; Muntean, Adrian</creator><creatorcontrib>Raveendran, Vishnu ; Cirillo, Emilio N M ; de Bonis, Ida ; Muntean, Adrian</creatorcontrib><description>We study the question of periodic homogenization of a variably scaled reaction-diffusion problem with non-linear drift posed for a domain crossed by a flat composite thin layer. The structure of the non-linearity in the drift was obtained in earlier works as hydrodynamic limit of a totally asymmetric simple exclusion process (TASEP) process for a population of interacting particles crossing a domain with obstacle. Using energy-type estimates as well as concepts like thin-layer convergence and two-scale convergence, we derive the homogenized evolution equation and the corresponding effective model parameters for a regularized problem. Special attention is paid to the derivation of the effective transmission conditions across the separating limit interface in essentially two different situations: (i) finitely thin layer and (ii) infinitely thin layer. This study should be seen as a preliminary step needed for the investigation of averaging fast non-linear drifts across material interfaces -- a topic with direct applications in the design of thin composite materials meant to be impenetrable to high-velocity impacts.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Composite materials ; Convection-diffusion equation ; Convergence ; Domains ; Drift ; Homogenization</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Raveendran, Vishnu</creatorcontrib><creatorcontrib>Cirillo, Emilio N M</creatorcontrib><creatorcontrib>de Bonis, Ida</creatorcontrib><creatorcontrib>Muntean, Adrian</creatorcontrib><title>Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer</title><title>arXiv.org</title><description>We study the question of periodic homogenization of a variably scaled reaction-diffusion problem with non-linear drift posed for a domain crossed by a flat composite thin layer. The structure of the non-linearity in the drift was obtained in earlier works as hydrodynamic limit of a totally asymmetric simple exclusion process (TASEP) process for a population of interacting particles crossing a domain with obstacle. Using energy-type estimates as well as concepts like thin-layer convergence and two-scale convergence, we derive the homogenized evolution equation and the corresponding effective model parameters for a regularized problem. Special attention is paid to the derivation of the effective transmission conditions across the separating limit interface in essentially two different situations: (i) finitely thin layer and (ii) infinitely thin layer. This study should be seen as a preliminary step needed for the investigation of averaging fast non-linear drifts across material interfaces -- a topic with direct applications in the design of thin composite materials meant to be impenetrable to high-velocity impacts.</description><subject>Composite materials</subject><subject>Convection-diffusion equation</subject><subject>Convergence</subject><subject>Domains</subject><subject>Drift</subject><subject>Homogenization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNj8FOwzAMhiMkJCbYO1jiXKkkdBvniYk73KcsdVZPbdzF6aTxKDwtLoI7J9v___m3fGMW1rmnavNs7Z1ZipzqurartW0atzBf78H3lI6AMWIoApygdAgjZuKWAnQ88BETffpC6nEEDxl9mKeqpRgnmbvA6YI_IoyZDz0OMLJgC5T-IpAngZYHT0lA-aS8AoerJpZOucCD7lBB6P0V84O5jb4XXP7We_O4e_3YvlV64DyhlP2Jp5zU2s-_uJfNetW4_1HfZzVbzw</recordid><startdate>20210718</startdate><enddate>20210718</enddate><creator>Raveendran, Vishnu</creator><creator>Cirillo, Emilio N M</creator><creator>de Bonis, Ida</creator><creator>Muntean, Adrian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210718</creationdate><title>Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer</title><author>Raveendran, Vishnu ; Cirillo, Emilio N M ; de Bonis, Ida ; Muntean, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25533987653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Composite materials</topic><topic>Convection-diffusion equation</topic><topic>Convergence</topic><topic>Domains</topic><topic>Drift</topic><topic>Homogenization</topic><toplevel>online_resources</toplevel><creatorcontrib>Raveendran, Vishnu</creatorcontrib><creatorcontrib>Cirillo, Emilio N M</creatorcontrib><creatorcontrib>de Bonis, Ida</creatorcontrib><creatorcontrib>Muntean, Adrian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raveendran, Vishnu</au><au>Cirillo, Emilio N M</au><au>de Bonis, Ida</au><au>Muntean, Adrian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer</atitle><jtitle>arXiv.org</jtitle><date>2021-07-18</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We study the question of periodic homogenization of a variably scaled reaction-diffusion problem with non-linear drift posed for a domain crossed by a flat composite thin layer. The structure of the non-linearity in the drift was obtained in earlier works as hydrodynamic limit of a totally asymmetric simple exclusion process (TASEP) process for a population of interacting particles crossing a domain with obstacle. Using energy-type estimates as well as concepts like thin-layer convergence and two-scale convergence, we derive the homogenized evolution equation and the corresponding effective model parameters for a regularized problem. Special attention is paid to the derivation of the effective transmission conditions across the separating limit interface in essentially two different situations: (i) finitely thin layer and (ii) infinitely thin layer. This study should be seen as a preliminary step needed for the investigation of averaging fast non-linear drifts across material interfaces -- a topic with direct applications in the design of thin composite materials meant to be impenetrable to high-velocity impacts.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2553398765
source Freely Accessible Journals
subjects Composite materials
Convection-diffusion equation
Convergence
Domains
Drift
Homogenization
title Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scaling%20effects%20on%20the%20periodic%20homogenization%20of%20a%20reaction-diffusion-convection%20problem%20posed%20in%20homogeneous%20domains%20connected%20by%20a%20thin%20composite%20layer&rft.jtitle=arXiv.org&rft.au=Raveendran,%20Vishnu&rft.date=2021-07-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2553398765%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553398765&rft_id=info:pmid/&rfr_iscdi=true