LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers

A diabetic foot ulcer (DFU) is one of the most devastating complications of diabetes. It has been reported that lncRNA GAS5 plays a vital role in wound healing in DFUs. However, the specific mechanism remains unclear. In this research, we aimed to investigate the role of GAS5 in wound healing in DFU...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laboratory investigation 2021-08, Vol.101 (8), p.1071-1083
Hauptverfasser: Peng, Wei-Xia, He, Pei-Xiang, Liu, Li-Jun, Zhu, Ting, Zhong, Ya-Qin, Xiang, Lin, Peng, Ke, Yang, Jing-Jin, Xiang, Guang-Da
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1083
container_issue 8
container_start_page 1071
container_title Laboratory investigation
container_volume 101
creator Peng, Wei-Xia
He, Pei-Xiang
Liu, Li-Jun
Zhu, Ting
Zhong, Ya-Qin
Xiang, Lin
Peng, Ke
Yang, Jing-Jin
Xiang, Guang-Da
description A diabetic foot ulcer (DFU) is one of the most devastating complications of diabetes. It has been reported that lncRNA GAS5 plays a vital role in wound healing in DFUs. However, the specific mechanism remains unclear. In this research, we aimed to investigate the role of GAS5 in wound healing in DFUs as well as the underlying mechanism. qPCR or western blotting was performed to measure the expression levels of GAS5, HIF1A, VEGF and TAF15. CCK-8 or EdU assays, flow cytometry, wound healing assays and tube formation assays were carried out to assess the proliferation, apoptosis, wound healing and in vitro angiogenesis of HUVECs, respectively. RNA pull-down and RIP assays were performed to verify the interaction between GAS5 and TAF15. ChIP and luciferase assays were conducted to verify the binding of TAF15 to the HIF1A promoter. In the DFU mouse model, H&E and Masson staining were used to determine epidermal and dermal thickness and collagen formation. GAS5 and HIF1A were downregulated in the skin tissues of DFU patients, and GAS5 overexpression promoted cell proliferation, wound healing and tubule formation in HG-treated HUVECs. In addition, GAS5 facilitated HIF1A expression by interacting with TAF15. Rescue assays demonstrated that the suppression of HIF1A/VEGF pathway activation partially reversed the functional roles of GAS5 in HUVECs. Furthermore, GAS5 accelerated wound healing by activating the HIF1A/VEGF pathway in mice with DFUs. GAS5 activates the HIF1A/VEGF pathway by binding to TAF15, resulting in accelerated wound healing in DFUs. Our findings may provide a theoretical basis for the clinical treatment of DFUs. Long noncoding RNAs GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 (a component of RNA polymerase II), resulting in accelerated wound healing in diabetic foot ulcers. These findings may provide a theoretical basis for clinical treatment.
doi_str_mv 10.1038/s41374-021-00598-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2553398557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0023683722005992</els_id><sourcerecordid>2515689449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-db3b06ac4835af5ad7fddc103b6d644344e5ebc8fb834c939532eb18905678573</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoModq3-AS8k4E1BxiaTZCYD3gxLd1tYFLR6O-TjTDdlN9lOMl3678121gpeFCGQc_E8J-fkReg9JZ8pYfI8cspqXpCSFoSIRhblCzSjgpGCMFK_RDNCSlZUktUn6E2Mt4RQzivxGp0wJmtRN2yG7lbefP_a4mX7Q2BlkrtXCSJOa8CXVwvanv-6WC7wTqX1Xj1gnY_z1vkbnAK-bhdUHIrdELYhAd6H0Vu8BrU5EM5j65SG5AzuQ0h43BgY4lv0qlebCO-O9yn6ubi4nl8Wq2_Lq3m7Kgyvy1RYzTSplOGSCdULZeveWpP31pWtOGecgwBtZK8l46ZhjWAlaCobIqpaipqdorOpb57uboSYuq2LBjYb5SGMsSsFFZVsOG8y-vEf9DaMg8_TZUow1kjx2LCcKDOEGAfou93gtmp46CjpDoF0UyBdDqR7DKQrs_Th2HrUW7BPyp8EMiAnYA869NE48AaeMEJIxWnJJM0V4XOXVHLBz_NHp6x--n8102yiYyb8DQx_l3x2_i-TBTmqe5et4zvWDWBSZ4N7Tv8NxWHHYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553398557</pqid></control><display><type>article</type><title>LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Peng, Wei-Xia ; He, Pei-Xiang ; Liu, Li-Jun ; Zhu, Ting ; Zhong, Ya-Qin ; Xiang, Lin ; Peng, Ke ; Yang, Jing-Jin ; Xiang, Guang-Da</creator><creatorcontrib>Peng, Wei-Xia ; He, Pei-Xiang ; Liu, Li-Jun ; Zhu, Ting ; Zhong, Ya-Qin ; Xiang, Lin ; Peng, Ke ; Yang, Jing-Jin ; Xiang, Guang-Da</creatorcontrib><description>A diabetic foot ulcer (DFU) is one of the most devastating complications of diabetes. It has been reported that lncRNA GAS5 plays a vital role in wound healing in DFUs. However, the specific mechanism remains unclear. In this research, we aimed to investigate the role of GAS5 in wound healing in DFUs as well as the underlying mechanism. qPCR or western blotting was performed to measure the expression levels of GAS5, HIF1A, VEGF and TAF15. CCK-8 or EdU assays, flow cytometry, wound healing assays and tube formation assays were carried out to assess the proliferation, apoptosis, wound healing and in vitro angiogenesis of HUVECs, respectively. RNA pull-down and RIP assays were performed to verify the interaction between GAS5 and TAF15. ChIP and luciferase assays were conducted to verify the binding of TAF15 to the HIF1A promoter. In the DFU mouse model, H&amp;E and Masson staining were used to determine epidermal and dermal thickness and collagen formation. GAS5 and HIF1A were downregulated in the skin tissues of DFU patients, and GAS5 overexpression promoted cell proliferation, wound healing and tubule formation in HG-treated HUVECs. In addition, GAS5 facilitated HIF1A expression by interacting with TAF15. Rescue assays demonstrated that the suppression of HIF1A/VEGF pathway activation partially reversed the functional roles of GAS5 in HUVECs. Furthermore, GAS5 accelerated wound healing by activating the HIF1A/VEGF pathway in mice with DFUs. GAS5 activates the HIF1A/VEGF pathway by binding to TAF15, resulting in accelerated wound healing in DFUs. Our findings may provide a theoretical basis for the clinical treatment of DFUs. Long noncoding RNAs GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 (a component of RNA polymerase II), resulting in accelerated wound healing in diabetic foot ulcers. These findings may provide a theoretical basis for clinical treatment.</description><identifier>ISSN: 0023-6837</identifier><identifier>EISSN: 1530-0307</identifier><identifier>DOI: 10.1038/s41374-021-00598-2</identifier><identifier>PMID: 33875793</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>13/31 ; 631/80/304 ; 692/699 ; Adult ; Aged ; Angiogenesis ; Animals ; Apoptosis ; Assaying ; Binding ; Cell proliferation ; Cell Proliferation - genetics ; Cells, Cultured ; Cholecystokinin ; Collagen ; Complications ; Diabetes ; Diabetes mellitus ; Diabetic Foot - metabolism ; Disease Models, Animal ; DNA-directed RNA polymerase ; Feet ; Female ; Flow cytometry ; Foot diseases ; Human Umbilical Vein Endothelial Cells ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Laboratory Medicine ; Leg ulcers ; Life Sciences &amp; Biomedicine ; Male ; Medicine ; Medicine &amp; Public Health ; Medicine, Research &amp; Experimental ; Mice ; Middle Aged ; Pathology ; Research &amp; Experimental Medicine ; RNA polymerase ; RNA polymerase II ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Science &amp; Technology ; Signal Transduction - genetics ; TATA-Binding Protein Associated Factors - genetics ; TATA-Binding Protein Associated Factors - metabolism ; Ulcers ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Western blotting ; Wound healing ; Wound Healing - genetics</subject><ispartof>Laboratory investigation, 2021-08, Vol.101 (8), p.1071-1083</ispartof><rights>2021 United States &amp; Canadian Academy of Pathology</rights><rights>The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2021. corrected publication 2021</rights><rights>2021. The Author(s), under exclusive licence to United States and Canadian Academy of Pathology.</rights><rights>The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000641238100004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c472t-db3b06ac4835af5ad7fddc103b6d644344e5ebc8fb834c939532eb18905678573</citedby><cites>FETCH-LOGICAL-c472t-db3b06ac4835af5ad7fddc103b6d644344e5ebc8fb834c939532eb18905678573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33875793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Wei-Xia</creatorcontrib><creatorcontrib>He, Pei-Xiang</creatorcontrib><creatorcontrib>Liu, Li-Jun</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Zhong, Ya-Qin</creatorcontrib><creatorcontrib>Xiang, Lin</creatorcontrib><creatorcontrib>Peng, Ke</creatorcontrib><creatorcontrib>Yang, Jing-Jin</creatorcontrib><creatorcontrib>Xiang, Guang-Da</creatorcontrib><title>LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers</title><title>Laboratory investigation</title><addtitle>Lab Invest</addtitle><addtitle>LAB INVEST</addtitle><addtitle>Lab Invest</addtitle><description>A diabetic foot ulcer (DFU) is one of the most devastating complications of diabetes. It has been reported that lncRNA GAS5 plays a vital role in wound healing in DFUs. However, the specific mechanism remains unclear. In this research, we aimed to investigate the role of GAS5 in wound healing in DFUs as well as the underlying mechanism. qPCR or western blotting was performed to measure the expression levels of GAS5, HIF1A, VEGF and TAF15. CCK-8 or EdU assays, flow cytometry, wound healing assays and tube formation assays were carried out to assess the proliferation, apoptosis, wound healing and in vitro angiogenesis of HUVECs, respectively. RNA pull-down and RIP assays were performed to verify the interaction between GAS5 and TAF15. ChIP and luciferase assays were conducted to verify the binding of TAF15 to the HIF1A promoter. In the DFU mouse model, H&amp;E and Masson staining were used to determine epidermal and dermal thickness and collagen formation. GAS5 and HIF1A were downregulated in the skin tissues of DFU patients, and GAS5 overexpression promoted cell proliferation, wound healing and tubule formation in HG-treated HUVECs. In addition, GAS5 facilitated HIF1A expression by interacting with TAF15. Rescue assays demonstrated that the suppression of HIF1A/VEGF pathway activation partially reversed the functional roles of GAS5 in HUVECs. Furthermore, GAS5 accelerated wound healing by activating the HIF1A/VEGF pathway in mice with DFUs. GAS5 activates the HIF1A/VEGF pathway by binding to TAF15, resulting in accelerated wound healing in DFUs. Our findings may provide a theoretical basis for the clinical treatment of DFUs. Long noncoding RNAs GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 (a component of RNA polymerase II), resulting in accelerated wound healing in diabetic foot ulcers. These findings may provide a theoretical basis for clinical treatment.</description><subject>13/31</subject><subject>631/80/304</subject><subject>692/699</subject><subject>Adult</subject><subject>Aged</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Assaying</subject><subject>Binding</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - genetics</subject><subject>Cells, Cultured</subject><subject>Cholecystokinin</subject><subject>Collagen</subject><subject>Complications</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic Foot - metabolism</subject><subject>Disease Models, Animal</subject><subject>DNA-directed RNA polymerase</subject><subject>Feet</subject><subject>Female</subject><subject>Flow cytometry</subject><subject>Foot diseases</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Laboratory Medicine</subject><subject>Leg ulcers</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Medicine, Research &amp; Experimental</subject><subject>Mice</subject><subject>Middle Aged</subject><subject>Pathology</subject><subject>Research &amp; Experimental Medicine</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Science &amp; Technology</subject><subject>Signal Transduction - genetics</subject><subject>TATA-Binding Protein Associated Factors - genetics</subject><subject>TATA-Binding Protein Associated Factors - metabolism</subject><subject>Ulcers</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Western blotting</subject><subject>Wound healing</subject><subject>Wound Healing - genetics</subject><issn>0023-6837</issn><issn>1530-0307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1rFDEUhoModq3-AS8k4E1BxiaTZCYD3gxLd1tYFLR6O-TjTDdlN9lOMl3678121gpeFCGQc_E8J-fkReg9JZ8pYfI8cspqXpCSFoSIRhblCzSjgpGCMFK_RDNCSlZUktUn6E2Mt4RQzivxGp0wJmtRN2yG7lbefP_a4mX7Q2BlkrtXCSJOa8CXVwvanv-6WC7wTqX1Xj1gnY_z1vkbnAK-bhdUHIrdELYhAd6H0Vu8BrU5EM5j65SG5AzuQ0h43BgY4lv0qlebCO-O9yn6ubi4nl8Wq2_Lq3m7Kgyvy1RYzTSplOGSCdULZeveWpP31pWtOGecgwBtZK8l46ZhjWAlaCobIqpaipqdorOpb57uboSYuq2LBjYb5SGMsSsFFZVsOG8y-vEf9DaMg8_TZUow1kjx2LCcKDOEGAfou93gtmp46CjpDoF0UyBdDqR7DKQrs_Th2HrUW7BPyp8EMiAnYA869NE48AaeMEJIxWnJJM0V4XOXVHLBz_NHp6x--n8102yiYyb8DQx_l3x2_i-TBTmqe5et4zvWDWBSZ4N7Tv8NxWHHYg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Peng, Wei-Xia</creator><creator>He, Pei-Xiang</creator><creator>Liu, Li-Jun</creator><creator>Zhu, Ting</creator><creator>Zhong, Ya-Qin</creator><creator>Xiang, Lin</creator><creator>Peng, Ke</creator><creator>Yang, Jing-Jin</creator><creator>Xiang, Guang-Da</creator><general>Elsevier Inc</general><general>Nature Publishing Group US</general><general>Elsevier</general><general>Nature Publishing Group</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20210801</creationdate><title>LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers</title><author>Peng, Wei-Xia ; He, Pei-Xiang ; Liu, Li-Jun ; Zhu, Ting ; Zhong, Ya-Qin ; Xiang, Lin ; Peng, Ke ; Yang, Jing-Jin ; Xiang, Guang-Da</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-db3b06ac4835af5ad7fddc103b6d644344e5ebc8fb834c939532eb18905678573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/31</topic><topic>631/80/304</topic><topic>692/699</topic><topic>Adult</topic><topic>Aged</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Assaying</topic><topic>Binding</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - genetics</topic><topic>Cells, Cultured</topic><topic>Cholecystokinin</topic><topic>Collagen</topic><topic>Complications</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic Foot - metabolism</topic><topic>Disease Models, Animal</topic><topic>DNA-directed RNA polymerase</topic><topic>Feet</topic><topic>Female</topic><topic>Flow cytometry</topic><topic>Foot diseases</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Laboratory Medicine</topic><topic>Leg ulcers</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Medicine, Research &amp; Experimental</topic><topic>Mice</topic><topic>Middle Aged</topic><topic>Pathology</topic><topic>Research &amp; Experimental Medicine</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Science &amp; Technology</topic><topic>Signal Transduction - genetics</topic><topic>TATA-Binding Protein Associated Factors - genetics</topic><topic>TATA-Binding Protein Associated Factors - metabolism</topic><topic>Ulcers</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Western blotting</topic><topic>Wound healing</topic><topic>Wound Healing - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Wei-Xia</creatorcontrib><creatorcontrib>He, Pei-Xiang</creatorcontrib><creatorcontrib>Liu, Li-Jun</creatorcontrib><creatorcontrib>Zhu, Ting</creatorcontrib><creatorcontrib>Zhong, Ya-Qin</creatorcontrib><creatorcontrib>Xiang, Lin</creatorcontrib><creatorcontrib>Peng, Ke</creatorcontrib><creatorcontrib>Yang, Jing-Jin</creatorcontrib><creatorcontrib>Xiang, Guang-Da</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Laboratory investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Wei-Xia</au><au>He, Pei-Xiang</au><au>Liu, Li-Jun</au><au>Zhu, Ting</au><au>Zhong, Ya-Qin</au><au>Xiang, Lin</au><au>Peng, Ke</au><au>Yang, Jing-Jin</au><au>Xiang, Guang-Da</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers</atitle><jtitle>Laboratory investigation</jtitle><stitle>Lab Invest</stitle><stitle>LAB INVEST</stitle><addtitle>Lab Invest</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>101</volume><issue>8</issue><spage>1071</spage><epage>1083</epage><pages>1071-1083</pages><issn>0023-6837</issn><eissn>1530-0307</eissn><abstract>A diabetic foot ulcer (DFU) is one of the most devastating complications of diabetes. It has been reported that lncRNA GAS5 plays a vital role in wound healing in DFUs. However, the specific mechanism remains unclear. In this research, we aimed to investigate the role of GAS5 in wound healing in DFUs as well as the underlying mechanism. qPCR or western blotting was performed to measure the expression levels of GAS5, HIF1A, VEGF and TAF15. CCK-8 or EdU assays, flow cytometry, wound healing assays and tube formation assays were carried out to assess the proliferation, apoptosis, wound healing and in vitro angiogenesis of HUVECs, respectively. RNA pull-down and RIP assays were performed to verify the interaction between GAS5 and TAF15. ChIP and luciferase assays were conducted to verify the binding of TAF15 to the HIF1A promoter. In the DFU mouse model, H&amp;E and Masson staining were used to determine epidermal and dermal thickness and collagen formation. GAS5 and HIF1A were downregulated in the skin tissues of DFU patients, and GAS5 overexpression promoted cell proliferation, wound healing and tubule formation in HG-treated HUVECs. In addition, GAS5 facilitated HIF1A expression by interacting with TAF15. Rescue assays demonstrated that the suppression of HIF1A/VEGF pathway activation partially reversed the functional roles of GAS5 in HUVECs. Furthermore, GAS5 accelerated wound healing by activating the HIF1A/VEGF pathway in mice with DFUs. GAS5 activates the HIF1A/VEGF pathway by binding to TAF15, resulting in accelerated wound healing in DFUs. Our findings may provide a theoretical basis for the clinical treatment of DFUs. Long noncoding RNAs GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 (a component of RNA polymerase II), resulting in accelerated wound healing in diabetic foot ulcers. These findings may provide a theoretical basis for clinical treatment.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><pmid>33875793</pmid><doi>10.1038/s41374-021-00598-2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0023-6837
ispartof Laboratory investigation, 2021-08, Vol.101 (8), p.1071-1083
issn 0023-6837
1530-0307
language eng
recordid cdi_proquest_journals_2553398557
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects 13/31
631/80/304
692/699
Adult
Aged
Angiogenesis
Animals
Apoptosis
Assaying
Binding
Cell proliferation
Cell Proliferation - genetics
Cells, Cultured
Cholecystokinin
Collagen
Complications
Diabetes
Diabetes mellitus
Diabetic Foot - metabolism
Disease Models, Animal
DNA-directed RNA polymerase
Feet
Female
Flow cytometry
Foot diseases
Human Umbilical Vein Endothelial Cells
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Laboratory Medicine
Leg ulcers
Life Sciences & Biomedicine
Male
Medicine
Medicine & Public Health
Medicine, Research & Experimental
Mice
Middle Aged
Pathology
Research & Experimental Medicine
RNA polymerase
RNA polymerase II
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Science & Technology
Signal Transduction - genetics
TATA-Binding Protein Associated Factors - genetics
TATA-Binding Protein Associated Factors - metabolism
Ulcers
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
Western blotting
Wound healing
Wound Healing - genetics
title LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LncRNA%20GAS5%20activates%20the%20HIF1A/VEGF%20pathway%20by%20binding%20to%20TAF15%20to%20promote%20wound%20healing%20in%20diabetic%20foot%20ulcers&rft.jtitle=Laboratory%20investigation&rft.au=Peng,%20Wei-Xia&rft.date=2021-08-01&rft.volume=101&rft.issue=8&rft.spage=1071&rft.epage=1083&rft.pages=1071-1083&rft.issn=0023-6837&rft.eissn=1530-0307&rft_id=info:doi/10.1038/s41374-021-00598-2&rft_dat=%3Cproquest_pubme%3E2515689449%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553398557&rft_id=info:pmid/33875793&rft_els_id=S0023683722005992&rfr_iscdi=true