Module for arbitrary controlled rotation in gate-based quantum algorithms

To assess whether a gate-based quantum algorithm can be executed successfully on a noisy intermediate-scale quantum (NISQ) device, both complexity and actual value of quantum resources should be considered carefully. Based on quantum phase estimation, we implemente arbitrary controlled rotation of q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-07
Hauptverfasser: Yan, Shilu, Dou, Tong, Runqiu Shu, Cui, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yan, Shilu
Dou, Tong
Runqiu Shu
Cui, Wei
description To assess whether a gate-based quantum algorithm can be executed successfully on a noisy intermediate-scale quantum (NISQ) device, both complexity and actual value of quantum resources should be considered carefully. Based on quantum phase estimation, we implemente arbitrary controlled rotation of quantum algorithms with a proposed modular method. The proposed method is not limited to be used as a submodule of the HHL algorithm and can be applied to more general quantum machine learning algorithms. Compared with the polynomial-fitting function method, our method only requires the least ancillas and the least quantum gates to maintain the high fidelity of quantum algorithms. The method theoretically will not influence the acceleration of original algorithms. Numerical simulations illustrate the effectiveness of the proposed method. Furthermore, if the corresponding diagonal unitary matrix can be effectively decomposed, the method is also polynomial in time cost.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2553397098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553397098</sourcerecordid><originalsourceid>FETCH-proquest_journals_25533970983</originalsourceid><addsrcrecordid>eNqNjbEKwjAURYMgWLT_EHAuxMTadhZFBzf38mrTmpLm2Zdk8O-t4Ac4XTjnwF2wRCq1y8q9lCuWej8IIeShkHmuEna9YRut5h0SB2pMIKA3f6ALhNbqlhMGCAYdN473EHTWgJ_xFMGFOHKwPZIJz9Fv2LID63X62zXbnk_34yV7EU5R-1APGMnNqv5eq6oQVan-qz7mwz1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553397098</pqid></control><display><type>article</type><title>Module for arbitrary controlled rotation in gate-based quantum algorithms</title><source>Freely Accessible Journals</source><creator>Yan, Shilu ; Dou, Tong ; Runqiu Shu ; Cui, Wei</creator><creatorcontrib>Yan, Shilu ; Dou, Tong ; Runqiu Shu ; Cui, Wei</creatorcontrib><description>To assess whether a gate-based quantum algorithm can be executed successfully on a noisy intermediate-scale quantum (NISQ) device, both complexity and actual value of quantum resources should be considered carefully. Based on quantum phase estimation, we implemente arbitrary controlled rotation of quantum algorithms with a proposed modular method. The proposed method is not limited to be used as a submodule of the HHL algorithm and can be applied to more general quantum machine learning algorithms. Compared with the polynomial-fitting function method, our method only requires the least ancillas and the least quantum gates to maintain the high fidelity of quantum algorithms. The method theoretically will not influence the acceleration of original algorithms. Numerical simulations illustrate the effectiveness of the proposed method. Furthermore, if the corresponding diagonal unitary matrix can be effectively decomposed, the method is also polynomial in time cost.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Machine learning ; Polynomials ; Rotation</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Yan, Shilu</creatorcontrib><creatorcontrib>Dou, Tong</creatorcontrib><creatorcontrib>Runqiu Shu</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><title>Module for arbitrary controlled rotation in gate-based quantum algorithms</title><title>arXiv.org</title><description>To assess whether a gate-based quantum algorithm can be executed successfully on a noisy intermediate-scale quantum (NISQ) device, both complexity and actual value of quantum resources should be considered carefully. Based on quantum phase estimation, we implemente arbitrary controlled rotation of quantum algorithms with a proposed modular method. The proposed method is not limited to be used as a submodule of the HHL algorithm and can be applied to more general quantum machine learning algorithms. Compared with the polynomial-fitting function method, our method only requires the least ancillas and the least quantum gates to maintain the high fidelity of quantum algorithms. The method theoretically will not influence the acceleration of original algorithms. Numerical simulations illustrate the effectiveness of the proposed method. Furthermore, if the corresponding diagonal unitary matrix can be effectively decomposed, the method is also polynomial in time cost.</description><subject>Algorithms</subject><subject>Machine learning</subject><subject>Polynomials</subject><subject>Rotation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjbEKwjAURYMgWLT_EHAuxMTadhZFBzf38mrTmpLm2Zdk8O-t4Ac4XTjnwF2wRCq1y8q9lCuWej8IIeShkHmuEna9YRut5h0SB2pMIKA3f6ALhNbqlhMGCAYdN473EHTWgJ_xFMGFOHKwPZIJz9Fv2LID63X62zXbnk_34yV7EU5R-1APGMnNqv5eq6oQVan-qz7mwz1A</recordid><startdate>20210717</startdate><enddate>20210717</enddate><creator>Yan, Shilu</creator><creator>Dou, Tong</creator><creator>Runqiu Shu</creator><creator>Cui, Wei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210717</creationdate><title>Module for arbitrary controlled rotation in gate-based quantum algorithms</title><author>Yan, Shilu ; Dou, Tong ; Runqiu Shu ; Cui, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25533970983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Machine learning</topic><topic>Polynomials</topic><topic>Rotation</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Shilu</creatorcontrib><creatorcontrib>Dou, Tong</creatorcontrib><creatorcontrib>Runqiu Shu</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Shilu</au><au>Dou, Tong</au><au>Runqiu Shu</au><au>Cui, Wei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Module for arbitrary controlled rotation in gate-based quantum algorithms</atitle><jtitle>arXiv.org</jtitle><date>2021-07-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>To assess whether a gate-based quantum algorithm can be executed successfully on a noisy intermediate-scale quantum (NISQ) device, both complexity and actual value of quantum resources should be considered carefully. Based on quantum phase estimation, we implemente arbitrary controlled rotation of quantum algorithms with a proposed modular method. The proposed method is not limited to be used as a submodule of the HHL algorithm and can be applied to more general quantum machine learning algorithms. Compared with the polynomial-fitting function method, our method only requires the least ancillas and the least quantum gates to maintain the high fidelity of quantum algorithms. The method theoretically will not influence the acceleration of original algorithms. Numerical simulations illustrate the effectiveness of the proposed method. Furthermore, if the corresponding diagonal unitary matrix can be effectively decomposed, the method is also polynomial in time cost.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2553397098
source Freely Accessible Journals
subjects Algorithms
Machine learning
Polynomials
Rotation
title Module for arbitrary controlled rotation in gate-based quantum algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Module%20for%20arbitrary%20controlled%20rotation%20in%20gate-based%20quantum%20algorithms&rft.jtitle=arXiv.org&rft.au=Yan,%20Shilu&rft.date=2021-07-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2553397098%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553397098&rft_id=info:pmid/&rfr_iscdi=true