Effect of the heat transfer coefficient on modelling the energy deposition of destructed meteoroid

Models of meteoroid destruction into the cloud of fragments moving with a common shock wave are considered: the two-parameter model that takes into account changes of the shape and density of the cloud, and simple models that leave these factors out of account, including those used in the literature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-07, Vol.1959 (1), p.12010
Hauptverfasser: Brykina, I G, Bragin, M D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12010
container_title Journal of physics. Conference series
container_volume 1959
creator Brykina, I G
Bragin, M D
description Models of meteoroid destruction into the cloud of fragments moving with a common shock wave are considered: the two-parameter model that takes into account changes of the shape and density of the cloud, and simple models that leave these factors out of account, including those used in the literature. Models differ in equations governing the lateral expansion of the cloud. We numerically simulate the interaction of the Chelyabinsk asteroid with the Earth’s atmosphere by solving the meteor physics equations using fragment cloud models, and study the models abilities to reproduce the observational energy deposition curve. Heat transfer coefficient effect on simulating energy deposition using different models is estimated. For simple fragment cloud models, the optimal coefficient in the cloud lateral expansion equation is proposed as a function of the heat transfer coefficient (ablation parameter) to match the observational altitude of the bolide peak brightness. The optimal value of the uncertainty parameter in the expression for the heat transfer coefficient is found to match also a shape of the observational energy deposition curve. It is shown that the optimal simple and the two-parameter models give results of modelling the energy deposition of the Chelyabinsk asteroid and estimates of its entry mass, which are very close to each other and are consistent with the observational data.
doi_str_mv 10.1088/1742-6596/1959/1/012010
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2553322943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553322943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2740-f62ef1d9e1a18dc328cd12162d6313e22fdc5501e44b9c196f0a32d1116be13c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURQdRsFZ_gwF3wti8ZD6XUuoXBQV1HabJS5vSTsYkXfTfm3GkIghmk8A7975wkuQS6A3QqppAmbG0yOtiAnVeT2BCgVGgR8noMDk-vKvqNDnzfk0pj6ccJYuZ1igDsZqEFZIVNoEE17ReoyPSotZGGmwj0JKtVbjZmHb5hWKLbrknCjvrTTBxHjsU-uB2MqAiWwxonTXqPDnRzcbjxfc9Tt7vZm_Th3T-fP84vZ2nkpUZTXXBUIOqERqolOSskgoYFEwVHDgyppXMcwqYZYtaQl1o2nCmAKBYIHDJx8nV0Ns5-7GLHxFru3NtXClYnnPOWJ3xSJUDJZ313qEWnTPbxu0FUNELFb0q0WsTvVABYhAak3xIGtv9VP-fuv4j9fQyff0Nik5p_gnQBIXf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553322943</pqid></control><display><type>article</type><title>Effect of the heat transfer coefficient on modelling the energy deposition of destructed meteoroid</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Brykina, I G ; Bragin, M D</creator><creatorcontrib>Brykina, I G ; Bragin, M D</creatorcontrib><description>Models of meteoroid destruction into the cloud of fragments moving with a common shock wave are considered: the two-parameter model that takes into account changes of the shape and density of the cloud, and simple models that leave these factors out of account, including those used in the literature. Models differ in equations governing the lateral expansion of the cloud. We numerically simulate the interaction of the Chelyabinsk asteroid with the Earth’s atmosphere by solving the meteor physics equations using fragment cloud models, and study the models abilities to reproduce the observational energy deposition curve. Heat transfer coefficient effect on simulating energy deposition using different models is estimated. For simple fragment cloud models, the optimal coefficient in the cloud lateral expansion equation is proposed as a function of the heat transfer coefficient (ablation parameter) to match the observational altitude of the bolide peak brightness. The optimal value of the uncertainty parameter in the expression for the heat transfer coefficient is found to match also a shape of the observational energy deposition curve. It is shown that the optimal simple and the two-parameter models give results of modelling the energy deposition of the Chelyabinsk asteroid and estimates of its entry mass, which are very close to each other and are consistent with the observational data.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1959/1/012010</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Ablation ; Asteroid collisions ; Asteroids ; Atmospheric models ; Clouds ; Deposition ; Heat transfer ; Heat transfer coefficients ; Mathematical models ; Meteors &amp; meteorites ; Parameter uncertainty ; Shock waves ; Thermal expansion</subject><ispartof>Journal of physics. Conference series, 2021-07, Vol.1959 (1), p.12010</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2740-f62ef1d9e1a18dc328cd12162d6313e22fdc5501e44b9c196f0a32d1116be13c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1959/1/012010/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Brykina, I G</creatorcontrib><creatorcontrib>Bragin, M D</creatorcontrib><title>Effect of the heat transfer coefficient on modelling the energy deposition of destructed meteoroid</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Models of meteoroid destruction into the cloud of fragments moving with a common shock wave are considered: the two-parameter model that takes into account changes of the shape and density of the cloud, and simple models that leave these factors out of account, including those used in the literature. Models differ in equations governing the lateral expansion of the cloud. We numerically simulate the interaction of the Chelyabinsk asteroid with the Earth’s atmosphere by solving the meteor physics equations using fragment cloud models, and study the models abilities to reproduce the observational energy deposition curve. Heat transfer coefficient effect on simulating energy deposition using different models is estimated. For simple fragment cloud models, the optimal coefficient in the cloud lateral expansion equation is proposed as a function of the heat transfer coefficient (ablation parameter) to match the observational altitude of the bolide peak brightness. The optimal value of the uncertainty parameter in the expression for the heat transfer coefficient is found to match also a shape of the observational energy deposition curve. It is shown that the optimal simple and the two-parameter models give results of modelling the energy deposition of the Chelyabinsk asteroid and estimates of its entry mass, which are very close to each other and are consistent with the observational data.</description><subject>Ablation</subject><subject>Asteroid collisions</subject><subject>Asteroids</subject><subject>Atmospheric models</subject><subject>Clouds</subject><subject>Deposition</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Mathematical models</subject><subject>Meteors &amp; meteorites</subject><subject>Parameter uncertainty</subject><subject>Shock waves</subject><subject>Thermal expansion</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkE1LAzEURQdRsFZ_gwF3wti8ZD6XUuoXBQV1HabJS5vSTsYkXfTfm3GkIghmk8A7975wkuQS6A3QqppAmbG0yOtiAnVeT2BCgVGgR8noMDk-vKvqNDnzfk0pj6ccJYuZ1igDsZqEFZIVNoEE17ReoyPSotZGGmwj0JKtVbjZmHb5hWKLbrknCjvrTTBxHjsU-uB2MqAiWwxonTXqPDnRzcbjxfc9Tt7vZm_Th3T-fP84vZ2nkpUZTXXBUIOqERqolOSskgoYFEwVHDgyppXMcwqYZYtaQl1o2nCmAKBYIHDJx8nV0Ns5-7GLHxFru3NtXClYnnPOWJ3xSJUDJZ313qEWnTPbxu0FUNELFb0q0WsTvVABYhAak3xIGtv9VP-fuv4j9fQyff0Nik5p_gnQBIXf</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Brykina, I G</creator><creator>Bragin, M D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210701</creationdate><title>Effect of the heat transfer coefficient on modelling the energy deposition of destructed meteoroid</title><author>Brykina, I G ; Bragin, M D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2740-f62ef1d9e1a18dc328cd12162d6313e22fdc5501e44b9c196f0a32d1116be13c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Asteroid collisions</topic><topic>Asteroids</topic><topic>Atmospheric models</topic><topic>Clouds</topic><topic>Deposition</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Mathematical models</topic><topic>Meteors &amp; meteorites</topic><topic>Parameter uncertainty</topic><topic>Shock waves</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brykina, I G</creatorcontrib><creatorcontrib>Bragin, M D</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brykina, I G</au><au>Bragin, M D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the heat transfer coefficient on modelling the energy deposition of destructed meteoroid</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>1959</volume><issue>1</issue><spage>12010</spage><pages>12010-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Models of meteoroid destruction into the cloud of fragments moving with a common shock wave are considered: the two-parameter model that takes into account changes of the shape and density of the cloud, and simple models that leave these factors out of account, including those used in the literature. Models differ in equations governing the lateral expansion of the cloud. We numerically simulate the interaction of the Chelyabinsk asteroid with the Earth’s atmosphere by solving the meteor physics equations using fragment cloud models, and study the models abilities to reproduce the observational energy deposition curve. Heat transfer coefficient effect on simulating energy deposition using different models is estimated. For simple fragment cloud models, the optimal coefficient in the cloud lateral expansion equation is proposed as a function of the heat transfer coefficient (ablation parameter) to match the observational altitude of the bolide peak brightness. The optimal value of the uncertainty parameter in the expression for the heat transfer coefficient is found to match also a shape of the observational energy deposition curve. It is shown that the optimal simple and the two-parameter models give results of modelling the energy deposition of the Chelyabinsk asteroid and estimates of its entry mass, which are very close to each other and are consistent with the observational data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1959/1/012010</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-07, Vol.1959 (1), p.12010
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2553322943
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ablation
Asteroid collisions
Asteroids
Atmospheric models
Clouds
Deposition
Heat transfer
Heat transfer coefficients
Mathematical models
Meteors & meteorites
Parameter uncertainty
Shock waves
Thermal expansion
title Effect of the heat transfer coefficient on modelling the energy deposition of destructed meteoroid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20heat%20transfer%20coefficient%20on%20modelling%20the%20energy%20deposition%20of%20destructed%20meteoroid&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Brykina,%20I%20G&rft.date=2021-07-01&rft.volume=1959&rft.issue=1&rft.spage=12010&rft.pages=12010-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1959/1/012010&rft_dat=%3Cproquest_iop_j%3E2553322943%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553322943&rft_id=info:pmid/&rfr_iscdi=true