A Survey on the Explainability of Supervised Machine Learning

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or finance,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of artificial intelligence research 2021-01, Vol.70, p.245-317
Hauptverfasser: Burkart, Nadia, Huber, Marco F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue
container_start_page 245
container_title The Journal of artificial intelligence research
container_volume 70
creator Burkart, Nadia
Huber, Marco F.
description Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or finance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.
doi_str_mv 10.1613/jair.1.12228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2553249126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553249126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8d365b479f94fed7228fd32e63b0da4983af65d4d10d4e2a86b9e31c73d026c53</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqVw4wEicSXBf7HjA4eqagGpiANwtpx4TR2FJNhJRd-elHLgNKuZ0e7qQ-ia4IwIwu5q40NGMkIpLU7QjGApUiVzefpvPkcXMdYYE8VpMUP3i-R1DDvYJ12bDFtIVt99Y3xrSt_4YXLdlPcQdj6CTZ5NtfUtJBswofXtxyU6c6aJcPWnc_S-Xr0tH9PNy8PTcrFJKybpkBaWibzkUjnFHVg5vecsoyBYia3hqmDGidxyS7DlQE0hSgWMVJJZTEWVszm6Oe7tQ_c1Qhx03Y2hnU5qmueMckWomFq3x1YVuhgDON0H_2nCXhOsD4D0AZAm-hcQ-wFq8lhK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553249126</pqid></control><display><type>article</type><title>A Survey on the Explainability of Supervised Machine Learning</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free E- Journals</source><creator>Burkart, Nadia ; Huber, Marco F.</creator><creatorcontrib>Burkart, Nadia ; Huber, Marco F.</creatorcontrib><description>Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or finance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.</description><identifier>ISSN: 1076-9757</identifier><identifier>EISSN: 1076-9757</identifier><identifier>EISSN: 1943-5037</identifier><identifier>DOI: 10.1613/jair.1.12228</identifier><language>eng</language><publisher>San Francisco: AI Access Foundation</publisher><subject>Artificial intelligence ; Artificial neural networks ; Decision making ; Machine learning ; Model accuracy ; Principles ; State-of-the-art reviews</subject><ispartof>The Journal of artificial intelligence research, 2021-01, Vol.70, p.245-317</ispartof><rights>2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8d365b479f94fed7228fd32e63b0da4983af65d4d10d4e2a86b9e31c73d026c53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Burkart, Nadia</creatorcontrib><creatorcontrib>Huber, Marco F.</creatorcontrib><title>A Survey on the Explainability of Supervised Machine Learning</title><title>The Journal of artificial intelligence research</title><description>Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or finance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Decision making</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Principles</subject><subject>State-of-the-art reviews</subject><issn>1076-9757</issn><issn>1076-9757</issn><issn>1943-5037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkM1OwzAQhC0EEqVw4wEicSXBf7HjA4eqagGpiANwtpx4TR2FJNhJRd-elHLgNKuZ0e7qQ-ia4IwIwu5q40NGMkIpLU7QjGApUiVzefpvPkcXMdYYE8VpMUP3i-R1DDvYJ12bDFtIVt99Y3xrSt_4YXLdlPcQdj6CTZ5NtfUtJBswofXtxyU6c6aJcPWnc_S-Xr0tH9PNy8PTcrFJKybpkBaWibzkUjnFHVg5vecsoyBYia3hqmDGidxyS7DlQE0hSgWMVJJZTEWVszm6Oe7tQ_c1Qhx03Y2hnU5qmueMckWomFq3x1YVuhgDON0H_2nCXhOsD4D0AZAm-hcQ-wFq8lhK</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Burkart, Nadia</creator><creator>Huber, Marco F.</creator><general>AI Access Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210119</creationdate><title>A Survey on the Explainability of Supervised Machine Learning</title><author>Burkart, Nadia ; Huber, Marco F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8d365b479f94fed7228fd32e63b0da4983af65d4d10d4e2a86b9e31c73d026c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Decision making</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Principles</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkart, Nadia</creatorcontrib><creatorcontrib>Huber, Marco F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The Journal of artificial intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkart, Nadia</au><au>Huber, Marco F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on the Explainability of Supervised Machine Learning</atitle><jtitle>The Journal of artificial intelligence research</jtitle><date>2021-01-19</date><risdate>2021</risdate><volume>70</volume><spage>245</spage><epage>317</epage><pages>245-317</pages><issn>1076-9757</issn><eissn>1076-9757</eissn><eissn>1943-5037</eissn><abstract>Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or finance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.</abstract><cop>San Francisco</cop><pub>AI Access Foundation</pub><doi>10.1613/jair.1.12228</doi><tpages>73</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-9757
ispartof The Journal of artificial intelligence research, 2021-01, Vol.70, p.245-317
issn 1076-9757
1076-9757
1943-5037
language eng
recordid cdi_proquest_journals_2553249126
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free E- Journals
subjects Artificial intelligence
Artificial neural networks
Decision making
Machine learning
Model accuracy
Principles
State-of-the-art reviews
title A Survey on the Explainability of Supervised Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20the%20Explainability%20of%20Supervised%20Machine%20Learning&rft.jtitle=The%20Journal%20of%20artificial%20intelligence%20research&rft.au=Burkart,%20Nadia&rft.date=2021-01-19&rft.volume=70&rft.spage=245&rft.epage=317&rft.pages=245-317&rft.issn=1076-9757&rft.eissn=1076-9757&rft_id=info:doi/10.1613/jair.1.12228&rft_dat=%3Cproquest_cross%3E2553249126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553249126&rft_id=info:pmid/&rfr_iscdi=true