Carbon‐based flexible self‐supporting cathode for lithium‐sulfur batteries: Progress and perspective

The flexible self‐supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity, which meets the requirements of flexible batteries. Lithium‐sulfur batteries (LSBs), as a new generation of energy storage system, hold much higher theoretical energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon Energy 2021-06, Vol.3 (2), p.271-302
Hauptverfasser: Xiao, Qinghuiqiang, Yang, Jinlin, Wang, Xiaodong, Deng, Yirui, Han, Peng, Yuan, Ning, Zhang, Lei, Feng, Ming, Wang, Chang‐an, Liu, Ruiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue 2
container_start_page 271
container_title Carbon Energy
container_volume 3
creator Xiao, Qinghuiqiang
Yang, Jinlin
Wang, Xiaodong
Deng, Yirui
Han, Peng
Yuan, Ning
Zhang, Lei
Feng, Ming
Wang, Chang‐an
Liu, Ruiping
description The flexible self‐supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity, which meets the requirements of flexible batteries. Lithium‐sulfur batteries (LSBs), as a new generation of energy storage system, hold much higher theoretical energy density than traditional batteries, and they have attracted extensive attention from both the academic and industrial communities. Selection of a proper substrate material is important for the flexible self‐supporting electrode. Carbon materials, with the advantages of light weight, high conductivity, strong structural plasticity, and low cost, provide the electrode with a large loading space for the active material and a conductive network. This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes. In this paper, the commonly used fabrication methods and recent research progresses of the flexible self‐supporting cathode with a carbon material as the substrate are introduced. Various sulfur loading methods are summarized, which provides useful information for the structural design of the cathode. As the first review article of the carbon‐based flexible self‐supporting LSB cathodes, it provides valuable guidance for the researchers working in the field of LSB. Lithium‐sulfur batteries with high energy density and low cost have been widely studied, especially, the designing of flexible self‐supporting electrodes. In this paper, the fabrication method and development history of carbon‐based flexible self‐supporting sulfur cathode are detailedly introduced. Meanwhile, carbon substrates with various dimension construction units were classified into different categories to discuss their structure–activity relationship in lithium‐sulfur batteries electrochemical performance enhancement. On the basis of the advantages and shortcomings of different types of cathodes, some expectations and design conceptions are laid out for the lithium‐sulfur batteries with long life, fast redox kinetics, and a wide working temperature range.
doi_str_mv 10.1002/cey2.96
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2553187989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710888035</galeid><doaj_id>oai_doaj_org_article_f028be1dd92e4a79afd3d49159ab36f8</doaj_id><sourcerecordid>A710888035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4936-a2a94c921c4cbe86dcbdbf05fdc42e0eccab2761bd7efb21f8f4dd6782c61c6f3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEElWpeIVIHDigXWwncWxuVVRopUpwgAMnyx6Pt15l42A7wN54BJ6xT4LboKoXJOSDR7---ee3p6peUrKlhLC3gEe2lfxJdcJ4029kw8XTR_Xz6iylPSkk7Slh8qTaDzqaMN3--m10Qlu7EX96M2KdcHRFTcs8h5j9tKtB55tgsXYh1qPPN3453AOjW2JtdM4YPaZ39acYdhFTqvVk6xljmhGy_44vqmdOjwnP_t6n1Zf3F5-Hy831xw9Xw_n1BtqScaOZli1IRqEFg4JbMNY40jkLLUOCANqwnlNje3SGUSdcay3vBQNOgbvmtLpafW3QezVHf9DxqIL26l4Icad0eRGMqBxhwiC1VjJsdS-1s41tJe2kNg13oni9Wr3mGL4tmLLahyVOJb5iXddQ0UshC7VdqZ0upn5yIUcN5Vg8eAgTOl_08_LlQgjSdKXh9doAMaQU0T3EpETdLVLdLVJJXsg3K_kDTXAJPE6AD3TZJOcN7xteKtIWWvw_Pfissw_TEJYpPxpUsh7_lUcNF19ZifUHzbjEoA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553187989</pqid></control><display><type>article</type><title>Carbon‐based flexible self‐supporting cathode for lithium‐sulfur batteries: Progress and perspective</title><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Xiao, Qinghuiqiang ; Yang, Jinlin ; Wang, Xiaodong ; Deng, Yirui ; Han, Peng ; Yuan, Ning ; Zhang, Lei ; Feng, Ming ; Wang, Chang‐an ; Liu, Ruiping</creator><creatorcontrib>Xiao, Qinghuiqiang ; Yang, Jinlin ; Wang, Xiaodong ; Deng, Yirui ; Han, Peng ; Yuan, Ning ; Zhang, Lei ; Feng, Ming ; Wang, Chang‐an ; Liu, Ruiping</creatorcontrib><description>The flexible self‐supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity, which meets the requirements of flexible batteries. Lithium‐sulfur batteries (LSBs), as a new generation of energy storage system, hold much higher theoretical energy density than traditional batteries, and they have attracted extensive attention from both the academic and industrial communities. Selection of a proper substrate material is important for the flexible self‐supporting electrode. Carbon materials, with the advantages of light weight, high conductivity, strong structural plasticity, and low cost, provide the electrode with a large loading space for the active material and a conductive network. This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes. In this paper, the commonly used fabrication methods and recent research progresses of the flexible self‐supporting cathode with a carbon material as the substrate are introduced. Various sulfur loading methods are summarized, which provides useful information for the structural design of the cathode. As the first review article of the carbon‐based flexible self‐supporting LSB cathodes, it provides valuable guidance for the researchers working in the field of LSB. Lithium‐sulfur batteries with high energy density and low cost have been widely studied, especially, the designing of flexible self‐supporting electrodes. In this paper, the fabrication method and development history of carbon‐based flexible self‐supporting sulfur cathode are detailedly introduced. Meanwhile, carbon substrates with various dimension construction units were classified into different categories to discuss their structure–activity relationship in lithium‐sulfur batteries electrochemical performance enhancement. On the basis of the advantages and shortcomings of different types of cathodes, some expectations and design conceptions are laid out for the lithium‐sulfur batteries with long life, fast redox kinetics, and a wide working temperature range.</description><identifier>ISSN: 2637-9368</identifier><identifier>EISSN: 2637-9368</identifier><identifier>DOI: 10.1002/cey2.96</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Batteries ; Carbon ; Cathodes ; Chemistry ; Chemistry, Physical ; Design and construction ; Electric properties ; Electrical properties ; Electrochemistry ; Electrodes ; Electrolytes ; Energy ; Energy &amp; Fuels ; Energy storage ; Fabrication ; flexible ; Flux density ; Lithium ; Lithium sulfur batteries ; Materials Science ; Materials Science, Multidisciplinary ; Mechanical properties ; Morphology ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; self‐supporting ; Specific capacity ; Storage batteries ; Structural design ; Structural engineering ; Substrates ; Sulfur ; Sulfur compounds ; Sulfur content ; Technology ; Weight reduction</subject><ispartof>Carbon Energy, 2021-06, Vol.3 (2), p.271-302</ispartof><rights>2021 The Authors. published by Wenzhou University and John Wiley &amp; Sons Australia, Ltd.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>89</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000663673600004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4936-a2a94c921c4cbe86dcbdbf05fdc42e0eccab2761bd7efb21f8f4dd6782c61c6f3</citedby><cites>FETCH-LOGICAL-c4936-a2a94c921c4cbe86dcbdbf05fdc42e0eccab2761bd7efb21f8f4dd6782c61c6f3</cites><orcidid>0000-0003-2277-785X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcey2.96$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcey2.96$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,1419,2104,2116,27931,27932,39265,45581,45582</link.rule.ids></links><search><creatorcontrib>Xiao, Qinghuiqiang</creatorcontrib><creatorcontrib>Yang, Jinlin</creatorcontrib><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Deng, Yirui</creatorcontrib><creatorcontrib>Han, Peng</creatorcontrib><creatorcontrib>Yuan, Ning</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Feng, Ming</creatorcontrib><creatorcontrib>Wang, Chang‐an</creatorcontrib><creatorcontrib>Liu, Ruiping</creatorcontrib><title>Carbon‐based flexible self‐supporting cathode for lithium‐sulfur batteries: Progress and perspective</title><title>Carbon Energy</title><addtitle>CARBON ENERGY</addtitle><description>The flexible self‐supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity, which meets the requirements of flexible batteries. Lithium‐sulfur batteries (LSBs), as a new generation of energy storage system, hold much higher theoretical energy density than traditional batteries, and they have attracted extensive attention from both the academic and industrial communities. Selection of a proper substrate material is important for the flexible self‐supporting electrode. Carbon materials, with the advantages of light weight, high conductivity, strong structural plasticity, and low cost, provide the electrode with a large loading space for the active material and a conductive network. This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes. In this paper, the commonly used fabrication methods and recent research progresses of the flexible self‐supporting cathode with a carbon material as the substrate are introduced. Various sulfur loading methods are summarized, which provides useful information for the structural design of the cathode. As the first review article of the carbon‐based flexible self‐supporting LSB cathodes, it provides valuable guidance for the researchers working in the field of LSB. Lithium‐sulfur batteries with high energy density and low cost have been widely studied, especially, the designing of flexible self‐supporting electrodes. In this paper, the fabrication method and development history of carbon‐based flexible self‐supporting sulfur cathode are detailedly introduced. Meanwhile, carbon substrates with various dimension construction units were classified into different categories to discuss their structure–activity relationship in lithium‐sulfur batteries electrochemical performance enhancement. On the basis of the advantages and shortcomings of different types of cathodes, some expectations and design conceptions are laid out for the lithium‐sulfur batteries with long life, fast redox kinetics, and a wide working temperature range.</description><subject>Batteries</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Design and construction</subject><subject>Electric properties</subject><subject>Electrical properties</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy &amp; Fuels</subject><subject>Energy storage</subject><subject>Fabrication</subject><subject>flexible</subject><subject>Flux density</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>self‐supporting</subject><subject>Specific capacity</subject><subject>Storage batteries</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Substrates</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><subject>Sulfur content</subject><subject>Technology</subject><subject>Weight reduction</subject><issn>2637-9368</issn><issn>2637-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkcFu1DAQhiMEElWpeIVIHDigXWwncWxuVVRopUpwgAMnyx6Pt15l42A7wN54BJ6xT4LboKoXJOSDR7---ee3p6peUrKlhLC3gEe2lfxJdcJ4029kw8XTR_Xz6iylPSkk7Slh8qTaDzqaMN3--m10Qlu7EX96M2KdcHRFTcs8h5j9tKtB55tgsXYh1qPPN3453AOjW2JtdM4YPaZ39acYdhFTqvVk6xljmhGy_44vqmdOjwnP_t6n1Zf3F5-Hy831xw9Xw_n1BtqScaOZli1IRqEFg4JbMNY40jkLLUOCANqwnlNje3SGUSdcay3vBQNOgbvmtLpafW3QezVHf9DxqIL26l4Icad0eRGMqBxhwiC1VjJsdS-1s41tJe2kNg13oni9Wr3mGL4tmLLahyVOJb5iXddQ0UshC7VdqZ0upn5yIUcN5Vg8eAgTOl_08_LlQgjSdKXh9doAMaQU0T3EpETdLVLdLVJJXsg3K_kDTXAJPE6AD3TZJOcN7xteKtIWWvw_Pfissw_TEJYpPxpUsh7_lUcNF19ZifUHzbjEoA</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Xiao, Qinghuiqiang</creator><creator>Yang, Jinlin</creator><creator>Wang, Xiaodong</creator><creator>Deng, Yirui</creator><creator>Han, Peng</creator><creator>Yuan, Ning</creator><creator>Zhang, Lei</creator><creator>Feng, Ming</creator><creator>Wang, Chang‐an</creator><creator>Liu, Ruiping</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2277-785X</orcidid></search><sort><creationdate>202106</creationdate><title>Carbon‐based flexible self‐supporting cathode for lithium‐sulfur batteries: Progress and perspective</title><author>Xiao, Qinghuiqiang ; Yang, Jinlin ; Wang, Xiaodong ; Deng, Yirui ; Han, Peng ; Yuan, Ning ; Zhang, Lei ; Feng, Ming ; Wang, Chang‐an ; Liu, Ruiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4936-a2a94c921c4cbe86dcbdbf05fdc42e0eccab2761bd7efb21f8f4dd6782c61c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Design and construction</topic><topic>Electric properties</topic><topic>Electrical properties</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy &amp; Fuels</topic><topic>Energy storage</topic><topic>Fabrication</topic><topic>flexible</topic><topic>Flux density</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>self‐supporting</topic><topic>Specific capacity</topic><topic>Storage batteries</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Substrates</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><topic>Sulfur content</topic><topic>Technology</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Qinghuiqiang</creatorcontrib><creatorcontrib>Yang, Jinlin</creatorcontrib><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Deng, Yirui</creatorcontrib><creatorcontrib>Han, Peng</creatorcontrib><creatorcontrib>Yuan, Ning</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Feng, Ming</creatorcontrib><creatorcontrib>Wang, Chang‐an</creatorcontrib><creatorcontrib>Liu, Ruiping</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Carbon Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Qinghuiqiang</au><au>Yang, Jinlin</au><au>Wang, Xiaodong</au><au>Deng, Yirui</au><au>Han, Peng</au><au>Yuan, Ning</au><au>Zhang, Lei</au><au>Feng, Ming</au><au>Wang, Chang‐an</au><au>Liu, Ruiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon‐based flexible self‐supporting cathode for lithium‐sulfur batteries: Progress and perspective</atitle><jtitle>Carbon Energy</jtitle><stitle>CARBON ENERGY</stitle><date>2021-06</date><risdate>2021</risdate><volume>3</volume><issue>2</issue><spage>271</spage><epage>302</epage><pages>271-302</pages><issn>2637-9368</issn><eissn>2637-9368</eissn><abstract>The flexible self‐supporting electrode can maintain good mechanical and electrical properties while retaining high specific capacity, which meets the requirements of flexible batteries. Lithium‐sulfur batteries (LSBs), as a new generation of energy storage system, hold much higher theoretical energy density than traditional batteries, and they have attracted extensive attention from both the academic and industrial communities. Selection of a proper substrate material is important for the flexible self‐supporting electrode. Carbon materials, with the advantages of light weight, high conductivity, strong structural plasticity, and low cost, provide the electrode with a large loading space for the active material and a conductive network. This makes the carbon materials meet the mechanical and electrochemical requirements of flexible electrodes. In this paper, the commonly used fabrication methods and recent research progresses of the flexible self‐supporting cathode with a carbon material as the substrate are introduced. Various sulfur loading methods are summarized, which provides useful information for the structural design of the cathode. As the first review article of the carbon‐based flexible self‐supporting LSB cathodes, it provides valuable guidance for the researchers working in the field of LSB. Lithium‐sulfur batteries with high energy density and low cost have been widely studied, especially, the designing of flexible self‐supporting electrodes. In this paper, the fabrication method and development history of carbon‐based flexible self‐supporting sulfur cathode are detailedly introduced. Meanwhile, carbon substrates with various dimension construction units were classified into different categories to discuss their structure–activity relationship in lithium‐sulfur batteries electrochemical performance enhancement. On the basis of the advantages and shortcomings of different types of cathodes, some expectations and design conceptions are laid out for the lithium‐sulfur batteries with long life, fast redox kinetics, and a wide working temperature range.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><doi>10.1002/cey2.96</doi><orcidid>https://orcid.org/0000-0003-2277-785X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2637-9368
ispartof Carbon Energy, 2021-06, Vol.3 (2), p.271-302
issn 2637-9368
2637-9368
language eng
recordid cdi_proquest_journals_2553187989
source Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Batteries
Carbon
Cathodes
Chemistry
Chemistry, Physical
Design and construction
Electric properties
Electrical properties
Electrochemistry
Electrodes
Electrolytes
Energy
Energy & Fuels
Energy storage
Fabrication
flexible
Flux density
Lithium
Lithium sulfur batteries
Materials Science
Materials Science, Multidisciplinary
Mechanical properties
Morphology
Nanoscience & Nanotechnology
Physical Sciences
Science & Technology
Science & Technology - Other Topics
self‐supporting
Specific capacity
Storage batteries
Structural design
Structural engineering
Substrates
Sulfur
Sulfur compounds
Sulfur content
Technology
Weight reduction
title Carbon‐based flexible self‐supporting cathode for lithium‐sulfur batteries: Progress and perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%E2%80%90based%20flexible%20self%E2%80%90supporting%20cathode%20for%20lithium%E2%80%90sulfur%20batteries:%20Progress%20and%20perspective&rft.jtitle=Carbon%20Energy&rft.au=Xiao,%20Qinghuiqiang&rft.date=2021-06&rft.volume=3&rft.issue=2&rft.spage=271&rft.epage=302&rft.pages=271-302&rft.issn=2637-9368&rft.eissn=2637-9368&rft_id=info:doi/10.1002/cey2.96&rft_dat=%3Cgale_proqu%3EA710888035%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553187989&rft_id=info:pmid/&rft_galeid=A710888035&rft_doaj_id=oai_doaj_org_article_f028be1dd92e4a79afd3d49159ab36f8&rfr_iscdi=true