Presence of s-Wave Pairing in Josephson Junctions Made of Twisted Ultrathin Bi2Sr2CaCu2O8+x Flakes
Since the discovery of high-temperature superconductivity in cuprates, Josephson junction based phase-sensitive experiments are believed and used to provide the most convincing evidence for determining the pairing symmetry. Regardless of different junction materials and geometries used, quantum tunn...
Gespeichert in:
Veröffentlicht in: | Physical review. X 2021-07, Vol.11 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review. X |
container_volume | 11 |
creator | Zhu, Yuying Liao, Menghan Zhang, Qinghua Hong-Yi, Xie Meng, Fanqi Liu, Yaowu Bai, Zhonghua Ji, Shuaihua Zhang, Jin Jiang, Kaili Zhong, Ruidan Schneeloch, John Gu, Genda Gu, Lin Ma, Xucun Zhang, Ding Qi-Kun Xue |
description | Since the discovery of high-temperature superconductivity in cuprates, Josephson junction based phase-sensitive experiments are believed and used to provide the most convincing evidence for determining the pairing symmetry. Regardless of different junction materials and geometries used, quantum tunneling involved in these experiments is essentially a nanoscale process, and thus, actual experimental results are extremely sensitive to atomic details of the junction structures. The situation has led to controversial results as to the nature of the pairing symmetry of cuprates: while in-plane junction experiments generally supportd-wave pairing symmetry, those based on out-of-plane (c-axis) Josephson junctions between two rotated cuprate blocks favors-wave pairing. In this work, we revisit thec-axis experiment by fabricating Josephson junctions with atomic-level control in their interface structure. We fabricate over 90 junctions of ultrathinBi2Sr2CaCu2O8+x(BSCCO) flakes by state-of-the-art exfoliation technique and obtain atomically flat junction interfaces in the whole junction regions as characterized by high-resolution transmission electron microscopy. Notably, the resultant uniform junctions at various twist angles all exhibit a single tunneling branch behavior, suggesting that only the first half of a unit cell on both sides of the twisted flakes is involved in the Josephson tunneling process. With such well-defined geometry and structure and the characteristic single tunneling branch, we repeatedly observe Josephson tunneling at a nominal twist angle of 45°, which is against the expectation from a purelyd-wave pairing scenario. Our results strongly favor the scenario of a persistents-wave order parameter in the junction. |
doi_str_mv | 10.1103/PhysRevX.11.031011 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2552848956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552848956</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-9fa6ab840ee30d11f3cfc95035f8d7cf12524fe869c2959ba05b06552bb7ade73</originalsourceid><addsrcrecordid>eNotjk9Lw0AQxRdBsNR-AU8LHiV1ZjebbI4arH-oNGiL3sommTWpIanZpOq3d1Hf5c2DH28eY2cIc0SQl1n17Z7o8OrTHCQC4hGbCIwgkBL0CZs5twOvCDCM4wnLs54ctQXxznIXvJgD8czUfd2-8brlD52jfeU6f41tMdRd6_ijKX_p9WftBir5phl6M1Sevq7Fcy9Sk45ipS---KIx7-RO2bE1jaPZv0_ZZnGzTu-C5er2Pr1aBntEOQSJNZHJdQhEEkpEKwtbJAqksrqMC4tCidCSjpJCJCrJDagcIqVEnsd-USyn7Pyvd993HyO5Ybvrxr71L7fCYzrUiYrkD7tkVrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552848956</pqid></control><display><type>article</type><title>Presence of s-Wave Pairing in Josephson Junctions Made of Twisted Ultrathin Bi2Sr2CaCu2O8+x Flakes</title><source>DOAJ Directory of Open Access Journals</source><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhu, Yuying ; Liao, Menghan ; Zhang, Qinghua ; Hong-Yi, Xie ; Meng, Fanqi ; Liu, Yaowu ; Bai, Zhonghua ; Ji, Shuaihua ; Zhang, Jin ; Jiang, Kaili ; Zhong, Ruidan ; Schneeloch, John ; Gu, Genda ; Gu, Lin ; Ma, Xucun ; Zhang, Ding ; Qi-Kun Xue</creator><creatorcontrib>Zhu, Yuying ; Liao, Menghan ; Zhang, Qinghua ; Hong-Yi, Xie ; Meng, Fanqi ; Liu, Yaowu ; Bai, Zhonghua ; Ji, Shuaihua ; Zhang, Jin ; Jiang, Kaili ; Zhong, Ruidan ; Schneeloch, John ; Gu, Genda ; Gu, Lin ; Ma, Xucun ; Zhang, Ding ; Qi-Kun Xue</creatorcontrib><description>Since the discovery of high-temperature superconductivity in cuprates, Josephson junction based phase-sensitive experiments are believed and used to provide the most convincing evidence for determining the pairing symmetry. Regardless of different junction materials and geometries used, quantum tunneling involved in these experiments is essentially a nanoscale process, and thus, actual experimental results are extremely sensitive to atomic details of the junction structures. The situation has led to controversial results as to the nature of the pairing symmetry of cuprates: while in-plane junction experiments generally supportd-wave pairing symmetry, those based on out-of-plane (c-axis) Josephson junctions between two rotated cuprate blocks favors-wave pairing. In this work, we revisit thec-axis experiment by fabricating Josephson junctions with atomic-level control in their interface structure. We fabricate over 90 junctions of ultrathinBi2Sr2CaCu2O8+x(BSCCO) flakes by state-of-the-art exfoliation technique and obtain atomically flat junction interfaces in the whole junction regions as characterized by high-resolution transmission electron microscopy. Notably, the resultant uniform junctions at various twist angles all exhibit a single tunneling branch behavior, suggesting that only the first half of a unit cell on both sides of the twisted flakes is involved in the Josephson tunneling process. With such well-defined geometry and structure and the characteristic single tunneling branch, we repeatedly observe Josephson tunneling at a nominal twist angle of 45°, which is against the expectation from a purelyd-wave pairing scenario. Our results strongly favor the scenario of a persistents-wave order parameter in the junction.</description><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.11.031011</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Angles (geometry) ; Angular momentum ; Bismuth strontium calcium copper oxide ; Circuits ; Cooper pairs ; Cuprates ; Electrical junctions ; Experiments ; Extreme values ; Flakes ; High resolution electron microscopy ; High temperature ; Josephson junctions ; Order parameters ; Quantum tunnelling ; Superconducting quantum interference devices ; Superconductivity ; Superconductors ; Symmetry ; Unit cell</subject><ispartof>Physical review. X, 2021-07, Vol.11 (3)</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhu, Yuying</creatorcontrib><creatorcontrib>Liao, Menghan</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Hong-Yi, Xie</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Liu, Yaowu</creatorcontrib><creatorcontrib>Bai, Zhonghua</creatorcontrib><creatorcontrib>Ji, Shuaihua</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Jiang, Kaili</creatorcontrib><creatorcontrib>Zhong, Ruidan</creatorcontrib><creatorcontrib>Schneeloch, John</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Ma, Xucun</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Qi-Kun Xue</creatorcontrib><title>Presence of s-Wave Pairing in Josephson Junctions Made of Twisted Ultrathin Bi2Sr2CaCu2O8+x Flakes</title><title>Physical review. X</title><description>Since the discovery of high-temperature superconductivity in cuprates, Josephson junction based phase-sensitive experiments are believed and used to provide the most convincing evidence for determining the pairing symmetry. Regardless of different junction materials and geometries used, quantum tunneling involved in these experiments is essentially a nanoscale process, and thus, actual experimental results are extremely sensitive to atomic details of the junction structures. The situation has led to controversial results as to the nature of the pairing symmetry of cuprates: while in-plane junction experiments generally supportd-wave pairing symmetry, those based on out-of-plane (c-axis) Josephson junctions between two rotated cuprate blocks favors-wave pairing. In this work, we revisit thec-axis experiment by fabricating Josephson junctions with atomic-level control in their interface structure. We fabricate over 90 junctions of ultrathinBi2Sr2CaCu2O8+x(BSCCO) flakes by state-of-the-art exfoliation technique and obtain atomically flat junction interfaces in the whole junction regions as characterized by high-resolution transmission electron microscopy. Notably, the resultant uniform junctions at various twist angles all exhibit a single tunneling branch behavior, suggesting that only the first half of a unit cell on both sides of the twisted flakes is involved in the Josephson tunneling process. With such well-defined geometry and structure and the characteristic single tunneling branch, we repeatedly observe Josephson tunneling at a nominal twist angle of 45°, which is against the expectation from a purelyd-wave pairing scenario. Our results strongly favor the scenario of a persistents-wave order parameter in the junction.</description><subject>Angles (geometry)</subject><subject>Angular momentum</subject><subject>Bismuth strontium calcium copper oxide</subject><subject>Circuits</subject><subject>Cooper pairs</subject><subject>Cuprates</subject><subject>Electrical junctions</subject><subject>Experiments</subject><subject>Extreme values</subject><subject>Flakes</subject><subject>High resolution electron microscopy</subject><subject>High temperature</subject><subject>Josephson junctions</subject><subject>Order parameters</subject><subject>Quantum tunnelling</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Symmetry</subject><subject>Unit cell</subject><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjk9Lw0AQxRdBsNR-AU8LHiV1ZjebbI4arH-oNGiL3sommTWpIanZpOq3d1Hf5c2DH28eY2cIc0SQl1n17Z7o8OrTHCQC4hGbCIwgkBL0CZs5twOvCDCM4wnLs54ctQXxznIXvJgD8czUfd2-8brlD52jfeU6f41tMdRd6_ijKX_p9WftBir5phl6M1Sevq7Fcy9Sk45ipS---KIx7-RO2bE1jaPZv0_ZZnGzTu-C5er2Pr1aBntEOQSJNZHJdQhEEkpEKwtbJAqksrqMC4tCidCSjpJCJCrJDagcIqVEnsd-USyn7Pyvd993HyO5Ybvrxr71L7fCYzrUiYrkD7tkVrs</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Zhu, Yuying</creator><creator>Liao, Menghan</creator><creator>Zhang, Qinghua</creator><creator>Hong-Yi, Xie</creator><creator>Meng, Fanqi</creator><creator>Liu, Yaowu</creator><creator>Bai, Zhonghua</creator><creator>Ji, Shuaihua</creator><creator>Zhang, Jin</creator><creator>Jiang, Kaili</creator><creator>Zhong, Ruidan</creator><creator>Schneeloch, John</creator><creator>Gu, Genda</creator><creator>Gu, Lin</creator><creator>Ma, Xucun</creator><creator>Zhang, Ding</creator><creator>Qi-Kun Xue</creator><general>American Physical Society</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210715</creationdate><title>Presence of s-Wave Pairing in Josephson Junctions Made of Twisted Ultrathin Bi2Sr2CaCu2O8+x Flakes</title><author>Zhu, Yuying ; Liao, Menghan ; Zhang, Qinghua ; Hong-Yi, Xie ; Meng, Fanqi ; Liu, Yaowu ; Bai, Zhonghua ; Ji, Shuaihua ; Zhang, Jin ; Jiang, Kaili ; Zhong, Ruidan ; Schneeloch, John ; Gu, Genda ; Gu, Lin ; Ma, Xucun ; Zhang, Ding ; Qi-Kun Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-9fa6ab840ee30d11f3cfc95035f8d7cf12524fe869c2959ba05b06552bb7ade73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angles (geometry)</topic><topic>Angular momentum</topic><topic>Bismuth strontium calcium copper oxide</topic><topic>Circuits</topic><topic>Cooper pairs</topic><topic>Cuprates</topic><topic>Electrical junctions</topic><topic>Experiments</topic><topic>Extreme values</topic><topic>Flakes</topic><topic>High resolution electron microscopy</topic><topic>High temperature</topic><topic>Josephson junctions</topic><topic>Order parameters</topic><topic>Quantum tunnelling</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Symmetry</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yuying</creatorcontrib><creatorcontrib>Liao, Menghan</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Hong-Yi, Xie</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Liu, Yaowu</creatorcontrib><creatorcontrib>Bai, Zhonghua</creatorcontrib><creatorcontrib>Ji, Shuaihua</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Jiang, Kaili</creatorcontrib><creatorcontrib>Zhong, Ruidan</creatorcontrib><creatorcontrib>Schneeloch, John</creatorcontrib><creatorcontrib>Gu, Genda</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Ma, Xucun</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Qi-Kun Xue</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yuying</au><au>Liao, Menghan</au><au>Zhang, Qinghua</au><au>Hong-Yi, Xie</au><au>Meng, Fanqi</au><au>Liu, Yaowu</au><au>Bai, Zhonghua</au><au>Ji, Shuaihua</au><au>Zhang, Jin</au><au>Jiang, Kaili</au><au>Zhong, Ruidan</au><au>Schneeloch, John</au><au>Gu, Genda</au><au>Gu, Lin</au><au>Ma, Xucun</au><au>Zhang, Ding</au><au>Qi-Kun Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presence of s-Wave Pairing in Josephson Junctions Made of Twisted Ultrathin Bi2Sr2CaCu2O8+x Flakes</atitle><jtitle>Physical review. X</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><eissn>2160-3308</eissn><abstract>Since the discovery of high-temperature superconductivity in cuprates, Josephson junction based phase-sensitive experiments are believed and used to provide the most convincing evidence for determining the pairing symmetry. Regardless of different junction materials and geometries used, quantum tunneling involved in these experiments is essentially a nanoscale process, and thus, actual experimental results are extremely sensitive to atomic details of the junction structures. The situation has led to controversial results as to the nature of the pairing symmetry of cuprates: while in-plane junction experiments generally supportd-wave pairing symmetry, those based on out-of-plane (c-axis) Josephson junctions between two rotated cuprate blocks favors-wave pairing. In this work, we revisit thec-axis experiment by fabricating Josephson junctions with atomic-level control in their interface structure. We fabricate over 90 junctions of ultrathinBi2Sr2CaCu2O8+x(BSCCO) flakes by state-of-the-art exfoliation technique and obtain atomically flat junction interfaces in the whole junction regions as characterized by high-resolution transmission electron microscopy. Notably, the resultant uniform junctions at various twist angles all exhibit a single tunneling branch behavior, suggesting that only the first half of a unit cell on both sides of the twisted flakes is involved in the Josephson tunneling process. With such well-defined geometry and structure and the characteristic single tunneling branch, we repeatedly observe Josephson tunneling at a nominal twist angle of 45°, which is against the expectation from a purelyd-wave pairing scenario. Our results strongly favor the scenario of a persistents-wave order parameter in the junction.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.11.031011</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2160-3308 |
ispartof | Physical review. X, 2021-07, Vol.11 (3) |
issn | 2160-3308 |
language | eng |
recordid | cdi_proquest_journals_2552848956 |
source | DOAJ Directory of Open Access Journals; American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Angles (geometry) Angular momentum Bismuth strontium calcium copper oxide Circuits Cooper pairs Cuprates Electrical junctions Experiments Extreme values Flakes High resolution electron microscopy High temperature Josephson junctions Order parameters Quantum tunnelling Superconducting quantum interference devices Superconductivity Superconductors Symmetry Unit cell |
title | Presence of s-Wave Pairing in Josephson Junctions Made of Twisted Ultrathin Bi2Sr2CaCu2O8+x Flakes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presence%20of%20s-Wave%20Pairing%20in%20Josephson%20Junctions%20Made%20of%20Twisted%20Ultrathin%20Bi2Sr2CaCu2O8+x%20Flakes&rft.jtitle=Physical%20review.%20X&rft.au=Zhu,%20Yuying&rft.date=2021-07-15&rft.volume=11&rft.issue=3&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.11.031011&rft_dat=%3Cproquest%3E2552848956%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552848956&rft_id=info:pmid/&rfr_iscdi=true |