A subspace iteration eigensolver based on Cauchy integrals for vibroacoustic problems in unbounded domains
Despite the potential and the increasing popularity of the boundary element method (BEM), modal analyses based on BEM are not yet put into engineering practice, mainly due to the lack of efficient solvers for the underlying nonlinear eigenvalue problem (EVP). In this article, we review a subspace it...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2021-08, Vol.122 (16), p.4250-4269 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4269 |
---|---|
container_issue | 16 |
container_start_page | 4250 |
container_title | International journal for numerical methods in engineering |
container_volume | 122 |
creator | Baydoun, Suhaib Koji Voigt, Matthias Goderbauer, Benedikt Jelich, Christopher Marburg, Steffen |
description | Despite the potential and the increasing popularity of the boundary element method (BEM), modal analyses based on BEM are not yet put into engineering practice, mainly due to the lack of efficient solvers for the underlying nonlinear eigenvalue problem (EVP). In this article, we review a subspace iteration method based on FEAST for the solution of vibroacoustic EVPs involving the finite element method (FEM) and BEM. The subspace is obtained by applying a spectral projector and is computed by contour integration, whereas the contour is also used to subsequently solve the projected EVP by rational approximation. The computation of the projection matrices is addressed by two approaches. In the case of heavy fluid loading, we solve the underlying coupled linear systems by an iterative block Krylov method. In the case of light fluid loading, we exploit the fact that the coupled system admits accurate model order reduction solely based on the structural subsystem. Applications to a spherical shell and to a musical bell indicate that only a few contour points are required for an accurate solution without inducing spurious eigenvalues. The results are compared with those of a contour integral method and illustrate the efficiency of the proposed eigensolver. |
doi_str_mv | 10.1002/nme.6701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552802079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552802079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-bda5d068fd152958fe0c195be3e47ac4288504afd5b847595c4529ec85e62a5d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgTwh48bI1yW662WMp9QP8uOg5JNnZmrKb1GRT6b83tV49Dcw878zwIHRNyYwSwu7cALN5TegJmlDS1AVhpD5FkzxqCt4Ieo4uYtwQQikn5QRtFjgmHbfKALYjBDVa7zDYNbjo-x0ErFWEFufmUiXzucfWjbAOqo-48wHvrA5eGZ_iaA3eBq97GGKGcHLaJ9fmbOsHZV28RGddjsHVX52ij_vV-_KxeH57eFoungtTspoWulW8JXPRtZSzhosOiKEN11BCVStTMSE4qVTXci2qmjfcVJkDIzjMWY6WU3Rz3Ju_-UoQR7nxKbh8UjLOmTgYaTJ1e6RM8DEG6OQ22EGFvaREHkzKbFIeTGa0OKLftof9v5x8fVn98j_6W3X1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552802079</pqid></control><display><type>article</type><title>A subspace iteration eigensolver based on Cauchy integrals for vibroacoustic problems in unbounded domains</title><source>Wiley Journals</source><creator>Baydoun, Suhaib Koji ; Voigt, Matthias ; Goderbauer, Benedikt ; Jelich, Christopher ; Marburg, Steffen</creator><creatorcontrib>Baydoun, Suhaib Koji ; Voigt, Matthias ; Goderbauer, Benedikt ; Jelich, Christopher ; Marburg, Steffen</creatorcontrib><description>Despite the potential and the increasing popularity of the boundary element method (BEM), modal analyses based on BEM are not yet put into engineering practice, mainly due to the lack of efficient solvers for the underlying nonlinear eigenvalue problem (EVP). In this article, we review a subspace iteration method based on FEAST for the solution of vibroacoustic EVPs involving the finite element method (FEM) and BEM. The subspace is obtained by applying a spectral projector and is computed by contour integration, whereas the contour is also used to subsequently solve the projected EVP by rational approximation. The computation of the projection matrices is addressed by two approaches. In the case of heavy fluid loading, we solve the underlying coupled linear systems by an iterative block Krylov method. In the case of light fluid loading, we exploit the fact that the coupled system admits accurate model order reduction solely based on the structural subsystem. Applications to a spherical shell and to a musical bell indicate that only a few contour points are required for an accurate solution without inducing spurious eigenvalues. The results are compared with those of a contour integral method and illustrate the efficiency of the proposed eigensolver.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6701</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Boundary element method ; Contours ; Eigenvalues ; FEAST ; Finite element method ; Integrals ; Iterative methods ; Linear systems ; modal analysis ; Model reduction ; rational approximation ; Spherical shells ; Subspaces ; Subsystems ; vibroacoustics</subject><ispartof>International journal for numerical methods in engineering, 2021-08, Vol.122 (16), p.4250-4269</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-bda5d068fd152958fe0c195be3e47ac4288504afd5b847595c4529ec85e62a5d3</citedby><cites>FETCH-LOGICAL-c3271-bda5d068fd152958fe0c195be3e47ac4288504afd5b847595c4529ec85e62a5d3</cites><orcidid>0000-0002-2617-3116 ; 0000-0002-1184-065X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6701$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6701$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Baydoun, Suhaib Koji</creatorcontrib><creatorcontrib>Voigt, Matthias</creatorcontrib><creatorcontrib>Goderbauer, Benedikt</creatorcontrib><creatorcontrib>Jelich, Christopher</creatorcontrib><creatorcontrib>Marburg, Steffen</creatorcontrib><title>A subspace iteration eigensolver based on Cauchy integrals for vibroacoustic problems in unbounded domains</title><title>International journal for numerical methods in engineering</title><description>Despite the potential and the increasing popularity of the boundary element method (BEM), modal analyses based on BEM are not yet put into engineering practice, mainly due to the lack of efficient solvers for the underlying nonlinear eigenvalue problem (EVP). In this article, we review a subspace iteration method based on FEAST for the solution of vibroacoustic EVPs involving the finite element method (FEM) and BEM. The subspace is obtained by applying a spectral projector and is computed by contour integration, whereas the contour is also used to subsequently solve the projected EVP by rational approximation. The computation of the projection matrices is addressed by two approaches. In the case of heavy fluid loading, we solve the underlying coupled linear systems by an iterative block Krylov method. In the case of light fluid loading, we exploit the fact that the coupled system admits accurate model order reduction solely based on the structural subsystem. Applications to a spherical shell and to a musical bell indicate that only a few contour points are required for an accurate solution without inducing spurious eigenvalues. The results are compared with those of a contour integral method and illustrate the efficiency of the proposed eigensolver.</description><subject>Boundary element method</subject><subject>Contours</subject><subject>Eigenvalues</subject><subject>FEAST</subject><subject>Finite element method</subject><subject>Integrals</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>modal analysis</subject><subject>Model reduction</subject><subject>rational approximation</subject><subject>Spherical shells</subject><subject>Subspaces</subject><subject>Subsystems</subject><subject>vibroacoustics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kE1LAzEQhoMoWKvgTwh48bI1yW662WMp9QP8uOg5JNnZmrKb1GRT6b83tV49Dcw878zwIHRNyYwSwu7cALN5TegJmlDS1AVhpD5FkzxqCt4Ieo4uYtwQQikn5QRtFjgmHbfKALYjBDVa7zDYNbjo-x0ErFWEFufmUiXzucfWjbAOqo-48wHvrA5eGZ_iaA3eBq97GGKGcHLaJ9fmbOsHZV28RGddjsHVX52ij_vV-_KxeH57eFoungtTspoWulW8JXPRtZSzhosOiKEN11BCVStTMSE4qVTXci2qmjfcVJkDIzjMWY6WU3Rz3Ju_-UoQR7nxKbh8UjLOmTgYaTJ1e6RM8DEG6OQ22EGFvaREHkzKbFIeTGa0OKLftof9v5x8fVn98j_6W3X1</recordid><startdate>20210830</startdate><enddate>20210830</enddate><creator>Baydoun, Suhaib Koji</creator><creator>Voigt, Matthias</creator><creator>Goderbauer, Benedikt</creator><creator>Jelich, Christopher</creator><creator>Marburg, Steffen</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2617-3116</orcidid><orcidid>https://orcid.org/0000-0002-1184-065X</orcidid></search><sort><creationdate>20210830</creationdate><title>A subspace iteration eigensolver based on Cauchy integrals for vibroacoustic problems in unbounded domains</title><author>Baydoun, Suhaib Koji ; Voigt, Matthias ; Goderbauer, Benedikt ; Jelich, Christopher ; Marburg, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-bda5d068fd152958fe0c195be3e47ac4288504afd5b847595c4529ec85e62a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary element method</topic><topic>Contours</topic><topic>Eigenvalues</topic><topic>FEAST</topic><topic>Finite element method</topic><topic>Integrals</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>modal analysis</topic><topic>Model reduction</topic><topic>rational approximation</topic><topic>Spherical shells</topic><topic>Subspaces</topic><topic>Subsystems</topic><topic>vibroacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baydoun, Suhaib Koji</creatorcontrib><creatorcontrib>Voigt, Matthias</creatorcontrib><creatorcontrib>Goderbauer, Benedikt</creatorcontrib><creatorcontrib>Jelich, Christopher</creatorcontrib><creatorcontrib>Marburg, Steffen</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baydoun, Suhaib Koji</au><au>Voigt, Matthias</au><au>Goderbauer, Benedikt</au><au>Jelich, Christopher</au><au>Marburg, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subspace iteration eigensolver based on Cauchy integrals for vibroacoustic problems in unbounded domains</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-08-30</date><risdate>2021</risdate><volume>122</volume><issue>16</issue><spage>4250</spage><epage>4269</epage><pages>4250-4269</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Despite the potential and the increasing popularity of the boundary element method (BEM), modal analyses based on BEM are not yet put into engineering practice, mainly due to the lack of efficient solvers for the underlying nonlinear eigenvalue problem (EVP). In this article, we review a subspace iteration method based on FEAST for the solution of vibroacoustic EVPs involving the finite element method (FEM) and BEM. The subspace is obtained by applying a spectral projector and is computed by contour integration, whereas the contour is also used to subsequently solve the projected EVP by rational approximation. The computation of the projection matrices is addressed by two approaches. In the case of heavy fluid loading, we solve the underlying coupled linear systems by an iterative block Krylov method. In the case of light fluid loading, we exploit the fact that the coupled system admits accurate model order reduction solely based on the structural subsystem. Applications to a spherical shell and to a musical bell indicate that only a few contour points are required for an accurate solution without inducing spurious eigenvalues. The results are compared with those of a contour integral method and illustrate the efficiency of the proposed eigensolver.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6701</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2617-3116</orcidid><orcidid>https://orcid.org/0000-0002-1184-065X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2021-08, Vol.122 (16), p.4250-4269 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2552802079 |
source | Wiley Journals |
subjects | Boundary element method Contours Eigenvalues FEAST Finite element method Integrals Iterative methods Linear systems modal analysis Model reduction rational approximation Spherical shells Subspaces Subsystems vibroacoustics |
title | A subspace iteration eigensolver based on Cauchy integrals for vibroacoustic problems in unbounded domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subspace%20iteration%20eigensolver%20based%20on%20Cauchy%20integrals%20for%20vibroacoustic%20problems%20in%20unbounded%20domains&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Baydoun,%20Suhaib%20Koji&rft.date=2021-08-30&rft.volume=122&rft.issue=16&rft.spage=4250&rft.epage=4269&rft.pages=4250-4269&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6701&rft_dat=%3Cproquest_cross%3E2552802079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552802079&rft_id=info:pmid/&rfr_iscdi=true |