Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites

In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2021-07, Vol.33 (4), p.1957-1978
Hauptverfasser: de León, L. E. Barraza, Camacho-Montes, H., Espinosa-Almeyda, Y., Otero, J. A., Rodríguez-Ramos, R., López-Realpozo, J. C., Sabina, F. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1978
container_issue 4
container_start_page 1957
container_title Continuum mechanics and thermodynamics
container_volume 33
creator de León, L. E. Barraza
Camacho-Montes, H.
Espinosa-Almeyda, Y.
Otero, J. A.
Rodríguez-Ramos, R.
López-Realpozo, J. C.
Sabina, F. J.
description In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective d 333 ∗ piezoelectric coefficient.
doi_str_mv 10.1007/s00161-021-01016-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2552759476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668994515</galeid><sourcerecordid>A668994515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3cde2e54387c0ba06aecba2a07513e31237549acda89311236319e4d4d07c513</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjB7oydK1UsizbWobQFwS6aNYVijxOFGzLlZRF-vWd1IXuihj0uucycwm542zOGaseImO85JTlWByPlJ2RGS9ETpmS6pzMmBKScl7JS3IV454hpKSYkY936B01g-mOydmsdYNLkEEHPQwp6yHtfJOZcewcNFnyWdz5kGjrNhBoADe0Plj8GR18eaRsCuhifT_6iEbxhly0potw-7tfk_XT43r5Qldvz6_LxYpaIetEhW0gB1mIurJsY1hpwG5MblgluQDBc1HJQhnbmFoJjtdScAVFUzSssii5JveT7Rj85wFi0nt_CDhU1LmUeSVVUZWomk-qrelAn3pPwVhcDWZg_QCtw_dFWdZKFZJLBPIJsMHHGKDVY3C9CUfNmT7lrqfcNeauf3LXDCExQRHFwxbCXy__UN-4LYYR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552759476</pqid></control><display><type>article</type><title>Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites</title><source>SpringerLink (Online service)</source><creator>de León, L. E. Barraza ; Camacho-Montes, H. ; Espinosa-Almeyda, Y. ; Otero, J. A. ; Rodríguez-Ramos, R. ; López-Realpozo, J. C. ; Sabina, F. J.</creator><creatorcontrib>de León, L. E. Barraza ; Camacho-Montes, H. ; Espinosa-Almeyda, Y. ; Otero, J. A. ; Rodríguez-Ramos, R. ; López-Realpozo, J. C. ; Sabina, F. J.</creatorcontrib><description>In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective d 333 ∗ piezoelectric coefficient.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-021-01016-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Asymptotic methods ; Classical and Continuum Physics ; Electric fields ; Engineering Thermodynamics ; Fiber composites ; Fibers ; Finite element analysis ; Finite element method ; Heat and Mass Transfer ; Mathematical analysis ; Methods ; Original Article ; Physics ; Physics and Astronomy ; Piezoelectricity ; Polymers ; Short fibers ; Structural Materials ; Theoretical and Applied Mechanics ; Unit cell</subject><ispartof>Continuum mechanics and thermodynamics, 2021-07, Vol.33 (4), p.1957-1978</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3cde2e54387c0ba06aecba2a07513e31237549acda89311236319e4d4d07c513</citedby><cites>FETCH-LOGICAL-c358t-3cde2e54387c0ba06aecba2a07513e31237549acda89311236319e4d4d07c513</cites><orcidid>0000-0002-2241-9545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-021-01016-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-021-01016-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de León, L. E. Barraza</creatorcontrib><creatorcontrib>Camacho-Montes, H.</creatorcontrib><creatorcontrib>Espinosa-Almeyda, Y.</creatorcontrib><creatorcontrib>Otero, J. A.</creatorcontrib><creatorcontrib>Rodríguez-Ramos, R.</creatorcontrib><creatorcontrib>López-Realpozo, J. C.</creatorcontrib><creatorcontrib>Sabina, F. J.</creatorcontrib><title>Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective d 333 ∗ piezoelectric coefficient.</description><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Classical and Continuum Physics</subject><subject>Electric fields</subject><subject>Engineering Thermodynamics</subject><subject>Fiber composites</subject><subject>Fibers</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Piezoelectricity</subject><subject>Polymers</subject><subject>Short fibers</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Unit cell</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtqwzAQRUVpoenjB7oydK1UsizbWobQFwS6aNYVijxOFGzLlZRF-vWd1IXuihj0uucycwm542zOGaseImO85JTlWByPlJ2RGS9ETpmS6pzMmBKScl7JS3IV454hpKSYkY936B01g-mOydmsdYNLkEEHPQwp6yHtfJOZcewcNFnyWdz5kGjrNhBoADe0Plj8GR18eaRsCuhifT_6iEbxhly0potw-7tfk_XT43r5Qldvz6_LxYpaIetEhW0gB1mIurJsY1hpwG5MblgluQDBc1HJQhnbmFoJjtdScAVFUzSssii5JveT7Rj85wFi0nt_CDhU1LmUeSVVUZWomk-qrelAn3pPwVhcDWZg_QCtw_dFWdZKFZJLBPIJsMHHGKDVY3C9CUfNmT7lrqfcNeauf3LXDCExQRHFwxbCXy__UN-4LYYR</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>de León, L. E. Barraza</creator><creator>Camacho-Montes, H.</creator><creator>Espinosa-Almeyda, Y.</creator><creator>Otero, J. A.</creator><creator>Rodríguez-Ramos, R.</creator><creator>López-Realpozo, J. C.</creator><creator>Sabina, F. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2241-9545</orcidid></search><sort><creationdate>20210701</creationdate><title>Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites</title><author>de León, L. E. Barraza ; Camacho-Montes, H. ; Espinosa-Almeyda, Y. ; Otero, J. A. ; Rodríguez-Ramos, R. ; López-Realpozo, J. C. ; Sabina, F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3cde2e54387c0ba06aecba2a07513e31237549acda89311236319e4d4d07c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Classical and Continuum Physics</topic><topic>Electric fields</topic><topic>Engineering Thermodynamics</topic><topic>Fiber composites</topic><topic>Fibers</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Piezoelectricity</topic><topic>Polymers</topic><topic>Short fibers</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de León, L. E. Barraza</creatorcontrib><creatorcontrib>Camacho-Montes, H.</creatorcontrib><creatorcontrib>Espinosa-Almeyda, Y.</creatorcontrib><creatorcontrib>Otero, J. A.</creatorcontrib><creatorcontrib>Rodríguez-Ramos, R.</creatorcontrib><creatorcontrib>López-Realpozo, J. C.</creatorcontrib><creatorcontrib>Sabina, F. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de León, L. E. Barraza</au><au>Camacho-Montes, H.</au><au>Espinosa-Almeyda, Y.</au><au>Otero, J. A.</au><au>Rodríguez-Ramos, R.</au><au>López-Realpozo, J. C.</au><au>Sabina, F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>4</issue><spage>1957</spage><epage>1978</epage><pages>1957-1978</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective d 333 ∗ piezoelectric coefficient.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-021-01016-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2241-9545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-1175
ispartof Continuum mechanics and thermodynamics, 2021-07, Vol.33 (4), p.1957-1978
issn 0935-1175
1432-0959
language eng
recordid cdi_proquest_journals_2552759476
source SpringerLink (Online service)
subjects Analysis
Asymptotic methods
Classical and Continuum Physics
Electric fields
Engineering Thermodynamics
Fiber composites
Fibers
Finite element analysis
Finite element method
Heat and Mass Transfer
Mathematical analysis
Methods
Original Article
Physics
Physics and Astronomy
Piezoelectricity
Polymers
Short fibers
Structural Materials
Theoretical and Applied Mechanics
Unit cell
title Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-analytic%20finite%20element%20method%20applied%20to%20short-fiber-reinforced%20piezoelectric%20composites&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=de%20Le%C3%B3n,%20L.%20E.%20Barraza&rft.date=2021-07-01&rft.volume=33&rft.issue=4&rft.spage=1957&rft.epage=1978&rft.pages=1957-1978&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-021-01016-0&rft_dat=%3Cgale_proqu%3EA668994515%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552759476&rft_id=info:pmid/&rft_galeid=A668994515&rfr_iscdi=true