Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites
In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective prope...
Gespeichert in:
Veröffentlicht in: | Continuum mechanics and thermodynamics 2021-07, Vol.33 (4), p.1957-1978 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1978 |
---|---|
container_issue | 4 |
container_start_page | 1957 |
container_title | Continuum mechanics and thermodynamics |
container_volume | 33 |
creator | de León, L. E. Barraza Camacho-Montes, H. Espinosa-Almeyda, Y. Otero, J. A. Rodríguez-Ramos, R. López-Realpozo, J. C. Sabina, F. J. |
description | In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective
d
333
∗
piezoelectric coefficient. |
doi_str_mv | 10.1007/s00161-021-01016-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2552759476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668994515</galeid><sourcerecordid>A668994515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3cde2e54387c0ba06aecba2a07513e31237549acda89311236319e4d4d07c513</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjB7oydK1UsizbWobQFwS6aNYVijxOFGzLlZRF-vWd1IXuihj0uucycwm542zOGaseImO85JTlWByPlJ2RGS9ETpmS6pzMmBKScl7JS3IV454hpKSYkY936B01g-mOydmsdYNLkEEHPQwp6yHtfJOZcewcNFnyWdz5kGjrNhBoADe0Plj8GR18eaRsCuhifT_6iEbxhly0potw-7tfk_XT43r5Qldvz6_LxYpaIetEhW0gB1mIurJsY1hpwG5MblgluQDBc1HJQhnbmFoJjtdScAVFUzSssii5JveT7Rj85wFi0nt_CDhU1LmUeSVVUZWomk-qrelAn3pPwVhcDWZg_QCtw_dFWdZKFZJLBPIJsMHHGKDVY3C9CUfNmT7lrqfcNeauf3LXDCExQRHFwxbCXy__UN-4LYYR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552759476</pqid></control><display><type>article</type><title>Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites</title><source>SpringerLink (Online service)</source><creator>de León, L. E. Barraza ; Camacho-Montes, H. ; Espinosa-Almeyda, Y. ; Otero, J. A. ; Rodríguez-Ramos, R. ; López-Realpozo, J. C. ; Sabina, F. J.</creator><creatorcontrib>de León, L. E. Barraza ; Camacho-Montes, H. ; Espinosa-Almeyda, Y. ; Otero, J. A. ; Rodríguez-Ramos, R. ; López-Realpozo, J. C. ; Sabina, F. J.</creatorcontrib><description>In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective
d
333
∗
piezoelectric coefficient.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-021-01016-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Asymptotic methods ; Classical and Continuum Physics ; Electric fields ; Engineering Thermodynamics ; Fiber composites ; Fibers ; Finite element analysis ; Finite element method ; Heat and Mass Transfer ; Mathematical analysis ; Methods ; Original Article ; Physics ; Physics and Astronomy ; Piezoelectricity ; Polymers ; Short fibers ; Structural Materials ; Theoretical and Applied Mechanics ; Unit cell</subject><ispartof>Continuum mechanics and thermodynamics, 2021-07, Vol.33 (4), p.1957-1978</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3cde2e54387c0ba06aecba2a07513e31237549acda89311236319e4d4d07c513</citedby><cites>FETCH-LOGICAL-c358t-3cde2e54387c0ba06aecba2a07513e31237549acda89311236319e4d4d07c513</cites><orcidid>0000-0002-2241-9545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-021-01016-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-021-01016-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de León, L. E. Barraza</creatorcontrib><creatorcontrib>Camacho-Montes, H.</creatorcontrib><creatorcontrib>Espinosa-Almeyda, Y.</creatorcontrib><creatorcontrib>Otero, J. A.</creatorcontrib><creatorcontrib>Rodríguez-Ramos, R.</creatorcontrib><creatorcontrib>López-Realpozo, J. C.</creatorcontrib><creatorcontrib>Sabina, F. J.</creatorcontrib><title>Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective
d
333
∗
piezoelectric coefficient.</description><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Classical and Continuum Physics</subject><subject>Electric fields</subject><subject>Engineering Thermodynamics</subject><subject>Fiber composites</subject><subject>Fibers</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Piezoelectricity</subject><subject>Polymers</subject><subject>Short fibers</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Unit cell</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtqwzAQRUVpoenjB7oydK1UsizbWobQFwS6aNYVijxOFGzLlZRF-vWd1IXuihj0uucycwm542zOGaseImO85JTlWByPlJ2RGS9ETpmS6pzMmBKScl7JS3IV454hpKSYkY936B01g-mOydmsdYNLkEEHPQwp6yHtfJOZcewcNFnyWdz5kGjrNhBoADe0Plj8GR18eaRsCuhifT_6iEbxhly0potw-7tfk_XT43r5Qldvz6_LxYpaIetEhW0gB1mIurJsY1hpwG5MblgluQDBc1HJQhnbmFoJjtdScAVFUzSssii5JveT7Rj85wFi0nt_CDhU1LmUeSVVUZWomk-qrelAn3pPwVhcDWZg_QCtw_dFWdZKFZJLBPIJsMHHGKDVY3C9CUfNmT7lrqfcNeauf3LXDCExQRHFwxbCXy__UN-4LYYR</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>de León, L. E. Barraza</creator><creator>Camacho-Montes, H.</creator><creator>Espinosa-Almeyda, Y.</creator><creator>Otero, J. A.</creator><creator>Rodríguez-Ramos, R.</creator><creator>López-Realpozo, J. C.</creator><creator>Sabina, F. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2241-9545</orcidid></search><sort><creationdate>20210701</creationdate><title>Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites</title><author>de León, L. E. Barraza ; Camacho-Montes, H. ; Espinosa-Almeyda, Y. ; Otero, J. A. ; Rodríguez-Ramos, R. ; López-Realpozo, J. C. ; Sabina, F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3cde2e54387c0ba06aecba2a07513e31237549acda89311236319e4d4d07c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Classical and Continuum Physics</topic><topic>Electric fields</topic><topic>Engineering Thermodynamics</topic><topic>Fiber composites</topic><topic>Fibers</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Piezoelectricity</topic><topic>Polymers</topic><topic>Short fibers</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de León, L. E. Barraza</creatorcontrib><creatorcontrib>Camacho-Montes, H.</creatorcontrib><creatorcontrib>Espinosa-Almeyda, Y.</creatorcontrib><creatorcontrib>Otero, J. A.</creatorcontrib><creatorcontrib>Rodríguez-Ramos, R.</creatorcontrib><creatorcontrib>López-Realpozo, J. C.</creatorcontrib><creatorcontrib>Sabina, F. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de León, L. E. Barraza</au><au>Camacho-Montes, H.</au><au>Espinosa-Almeyda, Y.</au><au>Otero, J. A.</au><au>Rodríguez-Ramos, R.</au><au>López-Realpozo, J. C.</au><au>Sabina, F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>4</issue><spage>1957</spage><epage>1978</epage><pages>1957-1978</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective
d
333
∗
piezoelectric coefficient.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-021-01016-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2241-9545</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-1175 |
ispartof | Continuum mechanics and thermodynamics, 2021-07, Vol.33 (4), p.1957-1978 |
issn | 0935-1175 1432-0959 |
language | eng |
recordid | cdi_proquest_journals_2552759476 |
source | SpringerLink (Online service) |
subjects | Analysis Asymptotic methods Classical and Continuum Physics Electric fields Engineering Thermodynamics Fiber composites Fibers Finite element analysis Finite element method Heat and Mass Transfer Mathematical analysis Methods Original Article Physics Physics and Astronomy Piezoelectricity Polymers Short fibers Structural Materials Theoretical and Applied Mechanics Unit cell |
title | Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-analytic%20finite%20element%20method%20applied%20to%20short-fiber-reinforced%20piezoelectric%20composites&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=de%20Le%C3%B3n,%20L.%20E.%20Barraza&rft.date=2021-07-01&rft.volume=33&rft.issue=4&rft.spage=1957&rft.epage=1978&rft.pages=1957-1978&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-021-01016-0&rft_dat=%3Cgale_proqu%3EA668994515%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552759476&rft_id=info:pmid/&rft_galeid=A668994515&rfr_iscdi=true |