Static finite element analysis of thin laminated strain gradient nanoplates in hygro-thermal environment
The manuscript aims to investigate the static behavior of laminated nanoplates in hygro-thermal environment. The theoretical framework is based on the Kirchhoff hypothesis for thin structures including the effect of material length scales, which is described by a nonlocal model. For this purpose, th...
Gespeichert in:
Veröffentlicht in: | Continuum mechanics and thermodynamics 2021-07, Vol.33 (4), p.969-992 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 992 |
---|---|
container_issue | 4 |
container_start_page | 969 |
container_title | Continuum mechanics and thermodynamics |
container_volume | 33 |
creator | Bacciocchi, M. Fantuzzi, N. Ferreira, A. J. M. |
description | The manuscript aims to investigate the static behavior of laminated nanoplates in hygro-thermal environment. The theoretical framework is based on the Kirchhoff hypothesis for thin structures including the effect of material length scales, which is described by a nonlocal model. For this purpose, the plane stress constitutive laws for laminates are enriched by a size-dependent parameter according to the principles of strain gradient theory. The variational form of such a peculiar theoretical formulation is developed to obtain the corresponding finite element (FE) model, due to the lack of similar numerical approaches in the literature. The difficulties arisen by the presence of higher-order derivatives of the displacements are overcome by using Hermite interpolating polynomials. Conforming and nonconforming FE formulations are presented to this aim. A broad validation procedure is carried out in terms of displacement and stress analysis to verify the accuracy of the approach. The comparison is accomplished taking into account the analytical solution given by the Navier methodology for cross-ply and angle-ply simply supported plates in hygro-thermal environment. The general model allows to extend the analysis to various boundary conditions and lamination schemes. |
doi_str_mv | 10.1007/s00161-020-00940-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2552759385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668994554</galeid><sourcerecordid>A668994554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d0a19c3437c237c6c85987b0de7406eb94ccd88d305f5d6e45d84c8e55cbdb083</originalsourceid><addsrcrecordid>eNp9kU-LHCEQxSUkkMkmXyAnIWc3ZavdelyW_IOFHHZzFkerZ1y6daJu2Pn2cdKB3EIhBc_3K6p4hLzncM0Bpo8VgI-cwQAMwEhgzy_IjksxMDDKvCQ7MEIxzif1mryp9RE6ZJTYkeN9cy16OscUG1JccMXUqEtuOddYaZ5pO8ZEF7fG5BoGWltxXTgUF-LFmlzKp6V_Vdrl4_lQMmtHLKtbKKZfseR0GfmWvJrdUvHd335Ffnz-9HD7ld19__Lt9uaOeaF0YwEcN15IMfmhv9FrZfS0h4CThBH3RnoftA4C1KzCiFIFLb1Gpfw-7EGLK_Jhm3sq-ecT1mYf81Pp51Q7KDVMygituut6cx3cgjamOferfK-Aa_Q54Ry7fjOO2hiplOzAsAG-5FoLzvZU4urK2XKwlwjsFoHtEdg_EdjnDokNqt2cDlj-7fIf6jeSbYuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552759385</pqid></control><display><type>article</type><title>Static finite element analysis of thin laminated strain gradient nanoplates in hygro-thermal environment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bacciocchi, M. ; Fantuzzi, N. ; Ferreira, A. J. M.</creator><creatorcontrib>Bacciocchi, M. ; Fantuzzi, N. ; Ferreira, A. J. M.</creatorcontrib><description>The manuscript aims to investigate the static behavior of laminated nanoplates in hygro-thermal environment. The theoretical framework is based on the Kirchhoff hypothesis for thin structures including the effect of material length scales, which is described by a nonlocal model. For this purpose, the plane stress constitutive laws for laminates are enriched by a size-dependent parameter according to the principles of strain gradient theory. The variational form of such a peculiar theoretical formulation is developed to obtain the corresponding finite element (FE) model, due to the lack of similar numerical approaches in the literature. The difficulties arisen by the presence of higher-order derivatives of the displacements are overcome by using Hermite interpolating polynomials. Conforming and nonconforming FE formulations are presented to this aim. A broad validation procedure is carried out in terms of displacement and stress analysis to verify the accuracy of the approach. The comparison is accomplished taking into account the analytical solution given by the Navier methodology for cross-ply and angle-ply simply supported plates in hygro-thermal environment. The general model allows to extend the analysis to various boundary conditions and lamination schemes.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-020-00940-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boundary conditions ; Classical and Continuum Physics ; Engineering Thermodynamics ; Exact solutions ; Finite element method ; Heat and Mass Transfer ; Hermite polynomials ; Laminated materials ; Laminates ; Laws, regulations and rules ; Original Research ; Physics ; Physics and Astronomy ; Plane stress ; Strain ; Stress analysis ; Structural Materials ; Theoretical and Applied Mechanics ; Thermal environments</subject><ispartof>Continuum mechanics and thermodynamics, 2021-07, Vol.33 (4), p.969-992</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d0a19c3437c237c6c85987b0de7406eb94ccd88d305f5d6e45d84c8e55cbdb083</citedby><cites>FETCH-LOGICAL-c358t-d0a19c3437c237c6c85987b0de7406eb94ccd88d305f5d6e45d84c8e55cbdb083</cites><orcidid>0000-0002-1152-2336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-020-00940-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-020-00940-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bacciocchi, M.</creatorcontrib><creatorcontrib>Fantuzzi, N.</creatorcontrib><creatorcontrib>Ferreira, A. J. M.</creatorcontrib><title>Static finite element analysis of thin laminated strain gradient nanoplates in hygro-thermal environment</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>The manuscript aims to investigate the static behavior of laminated nanoplates in hygro-thermal environment. The theoretical framework is based on the Kirchhoff hypothesis for thin structures including the effect of material length scales, which is described by a nonlocal model. For this purpose, the plane stress constitutive laws for laminates are enriched by a size-dependent parameter according to the principles of strain gradient theory. The variational form of such a peculiar theoretical formulation is developed to obtain the corresponding finite element (FE) model, due to the lack of similar numerical approaches in the literature. The difficulties arisen by the presence of higher-order derivatives of the displacements are overcome by using Hermite interpolating polynomials. Conforming and nonconforming FE formulations are presented to this aim. A broad validation procedure is carried out in terms of displacement and stress analysis to verify the accuracy of the approach. The comparison is accomplished taking into account the analytical solution given by the Navier methodology for cross-ply and angle-ply simply supported plates in hygro-thermal environment. The general model allows to extend the analysis to various boundary conditions and lamination schemes.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Engineering Thermodynamics</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Heat and Mass Transfer</subject><subject>Hermite polynomials</subject><subject>Laminated materials</subject><subject>Laminates</subject><subject>Laws, regulations and rules</subject><subject>Original Research</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plane stress</subject><subject>Strain</subject><subject>Stress analysis</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal environments</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU-LHCEQxSUkkMkmXyAnIWc3ZavdelyW_IOFHHZzFkerZ1y6daJu2Pn2cdKB3EIhBc_3K6p4hLzncM0Bpo8VgI-cwQAMwEhgzy_IjksxMDDKvCQ7MEIxzif1mryp9RE6ZJTYkeN9cy16OscUG1JccMXUqEtuOddYaZ5pO8ZEF7fG5BoGWltxXTgUF-LFmlzKp6V_Vdrl4_lQMmtHLKtbKKZfseR0GfmWvJrdUvHd335Ffnz-9HD7ld19__Lt9uaOeaF0YwEcN15IMfmhv9FrZfS0h4CThBH3RnoftA4C1KzCiFIFLb1Gpfw-7EGLK_Jhm3sq-ecT1mYf81Pp51Q7KDVMygituut6cx3cgjamOferfK-Aa_Q54Ry7fjOO2hiplOzAsAG-5FoLzvZU4urK2XKwlwjsFoHtEdg_EdjnDokNqt2cDlj-7fIf6jeSbYuk</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Bacciocchi, M.</creator><creator>Fantuzzi, N.</creator><creator>Ferreira, A. J. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1152-2336</orcidid></search><sort><creationdate>20210701</creationdate><title>Static finite element analysis of thin laminated strain gradient nanoplates in hygro-thermal environment</title><author>Bacciocchi, M. ; Fantuzzi, N. ; Ferreira, A. J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d0a19c3437c237c6c85987b0de7406eb94ccd88d305f5d6e45d84c8e55cbdb083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Engineering Thermodynamics</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Heat and Mass Transfer</topic><topic>Hermite polynomials</topic><topic>Laminated materials</topic><topic>Laminates</topic><topic>Laws, regulations and rules</topic><topic>Original Research</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plane stress</topic><topic>Strain</topic><topic>Stress analysis</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacciocchi, M.</creatorcontrib><creatorcontrib>Fantuzzi, N.</creatorcontrib><creatorcontrib>Ferreira, A. J. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacciocchi, M.</au><au>Fantuzzi, N.</au><au>Ferreira, A. J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static finite element analysis of thin laminated strain gradient nanoplates in hygro-thermal environment</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>4</issue><spage>969</spage><epage>992</epage><pages>969-992</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>The manuscript aims to investigate the static behavior of laminated nanoplates in hygro-thermal environment. The theoretical framework is based on the Kirchhoff hypothesis for thin structures including the effect of material length scales, which is described by a nonlocal model. For this purpose, the plane stress constitutive laws for laminates are enriched by a size-dependent parameter according to the principles of strain gradient theory. The variational form of such a peculiar theoretical formulation is developed to obtain the corresponding finite element (FE) model, due to the lack of similar numerical approaches in the literature. The difficulties arisen by the presence of higher-order derivatives of the displacements are overcome by using Hermite interpolating polynomials. Conforming and nonconforming FE formulations are presented to this aim. A broad validation procedure is carried out in terms of displacement and stress analysis to verify the accuracy of the approach. The comparison is accomplished taking into account the analytical solution given by the Navier methodology for cross-ply and angle-ply simply supported plates in hygro-thermal environment. The general model allows to extend the analysis to various boundary conditions and lamination schemes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-020-00940-x</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-1152-2336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-1175 |
ispartof | Continuum mechanics and thermodynamics, 2021-07, Vol.33 (4), p.969-992 |
issn | 0935-1175 1432-0959 |
language | eng |
recordid | cdi_proquest_journals_2552759385 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Boundary conditions Classical and Continuum Physics Engineering Thermodynamics Exact solutions Finite element method Heat and Mass Transfer Hermite polynomials Laminated materials Laminates Laws, regulations and rules Original Research Physics Physics and Astronomy Plane stress Strain Stress analysis Structural Materials Theoretical and Applied Mechanics Thermal environments |
title | Static finite element analysis of thin laminated strain gradient nanoplates in hygro-thermal environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20finite%20element%20analysis%20of%20thin%20laminated%20strain%20gradient%20nanoplates%20in%20hygro-thermal%20environment&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Bacciocchi,%20M.&rft.date=2021-07-01&rft.volume=33&rft.issue=4&rft.spage=969&rft.epage=992&rft.pages=969-992&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-020-00940-x&rft_dat=%3Cgale_proqu%3EA668994554%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552759385&rft_id=info:pmid/&rft_galeid=A668994554&rfr_iscdi=true |