Correlation between the microstructure and corrosion performance of the HIPIMS nitrided bio-grade CoCrMo alloy

•HIPIMS nitriding significantly improves corrosion resistance of the CoCrMo alloy.•Nitriding potential influences microstructure and eventually corrosion resistance.•Diffusion based S-phase layer clearly enhances corrosion resistance.•Selective dissolution of grain boundaries and ϵN phase grains evi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-10, Vol.879, p.160429, Article 160429
Hauptverfasser: Shukla, Krishnanand, Purandare, Yashodhan, Sugumaran, Arunprabhu, Ehiasarian, Arutiun, Khan, Imran, Hovsepian, Papken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 160429
container_title Journal of alloys and compounds
container_volume 879
creator Shukla, Krishnanand
Purandare, Yashodhan
Sugumaran, Arunprabhu
Ehiasarian, Arutiun
Khan, Imran
Hovsepian, Papken
description •HIPIMS nitriding significantly improves corrosion resistance of the CoCrMo alloy.•Nitriding potential influences microstructure and eventually corrosion resistance.•Diffusion based S-phase layer clearly enhances corrosion resistance.•Selective dissolution of grain boundaries and ϵN phase grains evident.•Precipitation of Cr based nitrides compromises the corrosion protection offered. [Display omitted] Corrosion performance of CoCrMo alloy (F75) plasma nitrided with High-Power Impulse Magnetron Sputtering (HIPIMS) technique was thoroughly investigated. Open Circuit Potential (OCP) measurements and potentiodynamic polarisation tests exhibited a strong correlation between the transmuting microstructure (as a result of varying nitriding voltage from −700 V to −1100 V) and its corrosion performance. A significant improvement in the ECorr values was noticed (around −590 mV for untreated as compared to −158.17 mV for −1000 V) when analysed against 3.5% wt. NaCl solution. Similarly, results against Hank's solution also exhibited a significant increase in ECorr values (around −776 mV for untreated as compared to −259 mV for −1000 mV). Irrespective of the nitriding voltage, HIPIMS nitriding led to a significant improvement in the corrosion resistance of the alloy. For nitriding voltages −700 V and −900 V, a diffusion based S phase layer played a significant role in imparting corrosion resistance. On the contrary, precipitation of chromium-based nitrides (CrN and Cr2N), observed in samples nitrided at relatively higher voltages of −1000 V and −1100 V, resulted in its relative deterioration. A preferential dissolution of the ϵN grains and its grain boundaries, along with a sluggish dissolution of the γN grains and metal carbides appeared to be the dominant corrosion mechanism for the nitrided alloys. Specimens nitrided at −700 V and −900 V displayed the best corrosion resistance, which was deemed to be derived from the right combination of a thicker S phase layer and the compound layer consisting of M2–3N and M4N phases.
doi_str_mv 10.1016/j.jallcom.2021.160429
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2552295452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821018387</els_id><sourcerecordid>2552295452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-bd1579350ac47de6b49825aef05db9b793734387897a23dc6d6e17cdaaca8dff3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4eQQi47phL0yYrkeJlQFFQ1yFNTjVlphlPM4pvb8dx7-oszvefy0fIGWdzznh10c97t1z6tJoLJvicV6wUZo_MuK5lUVaV2SczZoQqtNT6kByNY88Y40byGRmahAhLl2MaaAv5C2Cg-R3oKnpMY8aNzxsE6oZA_YSmcQuuAbuEKzd4oKn75e8WT4uHZzrEjDFAoG1MxRu6ALRJDT4kOp2Yvk_IQeeWI5z-1WPyenP90twV94-3i-bqvvBSl7loA1e1kYo5X9YBqrY0WigHHVOhNe3UqmUpda1N7YQMvgoV8NoH57zToevkMTnfzV1j-tjAmG2fNjhMK61QSgijSiUmSu2o7asjQmfXGFcOvy1ndqvW9vZPrd2qtTu1U-5yl4Pphc8IaEcfYZIRIoLPNqT4z4QfoVWGRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552295452</pqid></control><display><type>article</type><title>Correlation between the microstructure and corrosion performance of the HIPIMS nitrided bio-grade CoCrMo alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shukla, Krishnanand ; Purandare, Yashodhan ; Sugumaran, Arunprabhu ; Ehiasarian, Arutiun ; Khan, Imran ; Hovsepian, Papken</creator><creatorcontrib>Shukla, Krishnanand ; Purandare, Yashodhan ; Sugumaran, Arunprabhu ; Ehiasarian, Arutiun ; Khan, Imran ; Hovsepian, Papken</creatorcontrib><description>•HIPIMS nitriding significantly improves corrosion resistance of the CoCrMo alloy.•Nitriding potential influences microstructure and eventually corrosion resistance.•Diffusion based S-phase layer clearly enhances corrosion resistance.•Selective dissolution of grain boundaries and ϵN phase grains evident.•Precipitation of Cr based nitrides compromises the corrosion protection offered. [Display omitted] Corrosion performance of CoCrMo alloy (F75) plasma nitrided with High-Power Impulse Magnetron Sputtering (HIPIMS) technique was thoroughly investigated. Open Circuit Potential (OCP) measurements and potentiodynamic polarisation tests exhibited a strong correlation between the transmuting microstructure (as a result of varying nitriding voltage from −700 V to −1100 V) and its corrosion performance. A significant improvement in the ECorr values was noticed (around −590 mV for untreated as compared to −158.17 mV for −1000 V) when analysed against 3.5% wt. NaCl solution. Similarly, results against Hank's solution also exhibited a significant increase in ECorr values (around −776 mV for untreated as compared to −259 mV for −1000 mV). Irrespective of the nitriding voltage, HIPIMS nitriding led to a significant improvement in the corrosion resistance of the alloy. For nitriding voltages −700 V and −900 V, a diffusion based S phase layer played a significant role in imparting corrosion resistance. On the contrary, precipitation of chromium-based nitrides (CrN and Cr2N), observed in samples nitrided at relatively higher voltages of −1000 V and −1100 V, resulted in its relative deterioration. A preferential dissolution of the ϵN grains and its grain boundaries, along with a sluggish dissolution of the γN grains and metal carbides appeared to be the dominant corrosion mechanism for the nitrided alloys. Specimens nitrided at −700 V and −900 V displayed the best corrosion resistance, which was deemed to be derived from the right combination of a thicker S phase layer and the compound layer consisting of M2–3N and M4N phases.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.160429</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloys ; Chromium nitride ; Cobalt base alloys ; CoCrMo alloy ; Corrosion ; Corrosion mechanisms ; Corrosion resistance ; Corrosion resistant alloys ; Diffusion layers ; Dissolution ; Electric potential ; Grain boundaries ; Hip joints ; HIPIMS nitriding ; Magnetron sputtering ; Metal carbides ; Microstructure ; Nitriding ; Open circuit voltage ; Simulated body fluid</subject><ispartof>Journal of alloys and compounds, 2021-10, Vol.879, p.160429, Article 160429</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 25, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-bd1579350ac47de6b49825aef05db9b793734387897a23dc6d6e17cdaaca8dff3</citedby><cites>FETCH-LOGICAL-c384t-bd1579350ac47de6b49825aef05db9b793734387897a23dc6d6e17cdaaca8dff3</cites><orcidid>0000-0002-0240-6966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2021.160429$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shukla, Krishnanand</creatorcontrib><creatorcontrib>Purandare, Yashodhan</creatorcontrib><creatorcontrib>Sugumaran, Arunprabhu</creatorcontrib><creatorcontrib>Ehiasarian, Arutiun</creatorcontrib><creatorcontrib>Khan, Imran</creatorcontrib><creatorcontrib>Hovsepian, Papken</creatorcontrib><title>Correlation between the microstructure and corrosion performance of the HIPIMS nitrided bio-grade CoCrMo alloy</title><title>Journal of alloys and compounds</title><description>•HIPIMS nitriding significantly improves corrosion resistance of the CoCrMo alloy.•Nitriding potential influences microstructure and eventually corrosion resistance.•Diffusion based S-phase layer clearly enhances corrosion resistance.•Selective dissolution of grain boundaries and ϵN phase grains evident.•Precipitation of Cr based nitrides compromises the corrosion protection offered. [Display omitted] Corrosion performance of CoCrMo alloy (F75) plasma nitrided with High-Power Impulse Magnetron Sputtering (HIPIMS) technique was thoroughly investigated. Open Circuit Potential (OCP) measurements and potentiodynamic polarisation tests exhibited a strong correlation between the transmuting microstructure (as a result of varying nitriding voltage from −700 V to −1100 V) and its corrosion performance. A significant improvement in the ECorr values was noticed (around −590 mV for untreated as compared to −158.17 mV for −1000 V) when analysed against 3.5% wt. NaCl solution. Similarly, results against Hank's solution also exhibited a significant increase in ECorr values (around −776 mV for untreated as compared to −259 mV for −1000 mV). Irrespective of the nitriding voltage, HIPIMS nitriding led to a significant improvement in the corrosion resistance of the alloy. For nitriding voltages −700 V and −900 V, a diffusion based S phase layer played a significant role in imparting corrosion resistance. On the contrary, precipitation of chromium-based nitrides (CrN and Cr2N), observed in samples nitrided at relatively higher voltages of −1000 V and −1100 V, resulted in its relative deterioration. A preferential dissolution of the ϵN grains and its grain boundaries, along with a sluggish dissolution of the γN grains and metal carbides appeared to be the dominant corrosion mechanism for the nitrided alloys. Specimens nitrided at −700 V and −900 V displayed the best corrosion resistance, which was deemed to be derived from the right combination of a thicker S phase layer and the compound layer consisting of M2–3N and M4N phases.</description><subject>Alloys</subject><subject>Chromium nitride</subject><subject>Cobalt base alloys</subject><subject>CoCrMo alloy</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Diffusion layers</subject><subject>Dissolution</subject><subject>Electric potential</subject><subject>Grain boundaries</subject><subject>Hip joints</subject><subject>HIPIMS nitriding</subject><subject>Magnetron sputtering</subject><subject>Metal carbides</subject><subject>Microstructure</subject><subject>Nitriding</subject><subject>Open circuit voltage</subject><subject>Simulated body fluid</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4eQQi47phL0yYrkeJlQFFQ1yFNTjVlphlPM4pvb8dx7-oszvefy0fIGWdzznh10c97t1z6tJoLJvicV6wUZo_MuK5lUVaV2SczZoQqtNT6kByNY88Y40byGRmahAhLl2MaaAv5C2Cg-R3oKnpMY8aNzxsE6oZA_YSmcQuuAbuEKzd4oKn75e8WT4uHZzrEjDFAoG1MxRu6ALRJDT4kOp2Yvk_IQeeWI5z-1WPyenP90twV94-3i-bqvvBSl7loA1e1kYo5X9YBqrY0WigHHVOhNe3UqmUpda1N7YQMvgoV8NoH57zToevkMTnfzV1j-tjAmG2fNjhMK61QSgijSiUmSu2o7asjQmfXGFcOvy1ndqvW9vZPrd2qtTu1U-5yl4Pphc8IaEcfYZIRIoLPNqT4z4QfoVWGRQ</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Shukla, Krishnanand</creator><creator>Purandare, Yashodhan</creator><creator>Sugumaran, Arunprabhu</creator><creator>Ehiasarian, Arutiun</creator><creator>Khan, Imran</creator><creator>Hovsepian, Papken</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0240-6966</orcidid></search><sort><creationdate>20211025</creationdate><title>Correlation between the microstructure and corrosion performance of the HIPIMS nitrided bio-grade CoCrMo alloy</title><author>Shukla, Krishnanand ; Purandare, Yashodhan ; Sugumaran, Arunprabhu ; Ehiasarian, Arutiun ; Khan, Imran ; Hovsepian, Papken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-bd1579350ac47de6b49825aef05db9b793734387897a23dc6d6e17cdaaca8dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Chromium nitride</topic><topic>Cobalt base alloys</topic><topic>CoCrMo alloy</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Diffusion layers</topic><topic>Dissolution</topic><topic>Electric potential</topic><topic>Grain boundaries</topic><topic>Hip joints</topic><topic>HIPIMS nitriding</topic><topic>Magnetron sputtering</topic><topic>Metal carbides</topic><topic>Microstructure</topic><topic>Nitriding</topic><topic>Open circuit voltage</topic><topic>Simulated body fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Krishnanand</creatorcontrib><creatorcontrib>Purandare, Yashodhan</creatorcontrib><creatorcontrib>Sugumaran, Arunprabhu</creatorcontrib><creatorcontrib>Ehiasarian, Arutiun</creatorcontrib><creatorcontrib>Khan, Imran</creatorcontrib><creatorcontrib>Hovsepian, Papken</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukla, Krishnanand</au><au>Purandare, Yashodhan</au><au>Sugumaran, Arunprabhu</au><au>Ehiasarian, Arutiun</au><au>Khan, Imran</au><au>Hovsepian, Papken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation between the microstructure and corrosion performance of the HIPIMS nitrided bio-grade CoCrMo alloy</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-10-25</date><risdate>2021</risdate><volume>879</volume><spage>160429</spage><pages>160429-</pages><artnum>160429</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•HIPIMS nitriding significantly improves corrosion resistance of the CoCrMo alloy.•Nitriding potential influences microstructure and eventually corrosion resistance.•Diffusion based S-phase layer clearly enhances corrosion resistance.•Selective dissolution of grain boundaries and ϵN phase grains evident.•Precipitation of Cr based nitrides compromises the corrosion protection offered. [Display omitted] Corrosion performance of CoCrMo alloy (F75) plasma nitrided with High-Power Impulse Magnetron Sputtering (HIPIMS) technique was thoroughly investigated. Open Circuit Potential (OCP) measurements and potentiodynamic polarisation tests exhibited a strong correlation between the transmuting microstructure (as a result of varying nitriding voltage from −700 V to −1100 V) and its corrosion performance. A significant improvement in the ECorr values was noticed (around −590 mV for untreated as compared to −158.17 mV for −1000 V) when analysed against 3.5% wt. NaCl solution. Similarly, results against Hank's solution also exhibited a significant increase in ECorr values (around −776 mV for untreated as compared to −259 mV for −1000 mV). Irrespective of the nitriding voltage, HIPIMS nitriding led to a significant improvement in the corrosion resistance of the alloy. For nitriding voltages −700 V and −900 V, a diffusion based S phase layer played a significant role in imparting corrosion resistance. On the contrary, precipitation of chromium-based nitrides (CrN and Cr2N), observed in samples nitrided at relatively higher voltages of −1000 V and −1100 V, resulted in its relative deterioration. A preferential dissolution of the ϵN grains and its grain boundaries, along with a sluggish dissolution of the γN grains and metal carbides appeared to be the dominant corrosion mechanism for the nitrided alloys. Specimens nitrided at −700 V and −900 V displayed the best corrosion resistance, which was deemed to be derived from the right combination of a thicker S phase layer and the compound layer consisting of M2–3N and M4N phases.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.160429</doi><orcidid>https://orcid.org/0000-0002-0240-6966</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-10, Vol.879, p.160429, Article 160429
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2552295452
source Access via ScienceDirect (Elsevier)
subjects Alloys
Chromium nitride
Cobalt base alloys
CoCrMo alloy
Corrosion
Corrosion mechanisms
Corrosion resistance
Corrosion resistant alloys
Diffusion layers
Dissolution
Electric potential
Grain boundaries
Hip joints
HIPIMS nitriding
Magnetron sputtering
Metal carbides
Microstructure
Nitriding
Open circuit voltage
Simulated body fluid
title Correlation between the microstructure and corrosion performance of the HIPIMS nitrided bio-grade CoCrMo alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20between%20the%20microstructure%20and%20corrosion%20performance%20of%20the%20HIPIMS%20nitrided%20bio-grade%20CoCrMo%20alloy&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Shukla,%20Krishnanand&rft.date=2021-10-25&rft.volume=879&rft.spage=160429&rft.pages=160429-&rft.artnum=160429&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.160429&rft_dat=%3Cproquest_cross%3E2552295452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552295452&rft_id=info:pmid/&rft_els_id=S0925838821018387&rfr_iscdi=true